Advertisement

Ocean Science Journal

, Volume 53, Issue 4, pp 727–734 | Cite as

Genome Wide Computational Identification of Tuna (Thunnus orientalis) MicroRNAs and Their Targets

  • Sangita Chowdhury Paul
  • Ashutosh Sharma
  • Richa Mehta
  • Sujay PaulEmail author
Note
  • 30 Downloads

Abstract

Applying genome-wide computational-based approaches (using the draft genome sequence published in recent years) and following a set of strict filtering criteria, a total of 48 potentially conserved microRNAs belonging to 30 families were identified from economically important fish tuna (Thunnus orientalis). Using BLAST and RNA hybrid program a total of 19 potential miRNA targets were also identified in this study, which includes a number of signaling molecules (serine/threonine-protein kinase, GTPase activating protein etc.) and transcription factors (F-box protein, zinc finger protein etc.). This study provides the basis for gaining a better understanding of miRNA-mediated gene regulatory processes in fishes.

Keywords

teleost fish Pacific bluefin tuna (Thunnus orientaliscomparative genomics MFE MFEI 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barozai MYK (2012) Identification and characterization of the microRNAs and their targets in Salmo salar. Gene 499:163–168. doi:10.1016/j.gene.2012.03.006CrossRefGoogle Scholar
  2. Borchert GM, Lanier W, Davidson BL (2006) RNA polymerase III transcribes human microRNAs. Nat Struct Mol Biol 13:1097–1101. doi:10.1038/nsmb1167CrossRefGoogle Scholar
  3. Gorodkin J, Havgaard JH, Enster M, Sawera M, Jensen P, Öhman M, Fredholm M (2006) MicroRNA sequence motifs reveal asymmetry between the stem arms. Comput Biol Chem 30:249–254. doi:10.1016/j.compbiolchem.2006.04.006CrossRefGoogle Scholar
  4. Hagen JW, Lai EC (2008) MicroRNA control of cell-cell signaling during development and disease. Cell Cycle 7:2327–2332CrossRefGoogle Scholar
  5. Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucl Acid S 41:95–98Google Scholar
  6. Huang Y, Zou Q, Ren HT, Sun XH (2015) Prediction and characterization of microRNAs from eleven fish species by computational methods. Saudi J Biol Sci 22:374–381. doi: 10.1016/j.sjbs.2014.10.005CrossRefGoogle Scholar
  7. Huang Y, Zou Q, Wang ZB (2014) Computational identification of miRNA genes and their targets in mulberry. Russ J Plant Physiol 61:537–542. doi:10.1134/S1021443714040104CrossRefGoogle Scholar
  8. Krüger J, Rehmsmeier M (2006) RNAhybrid: microRNA target prediction easy, fast and flexible. Nucleic Acids Res 34:W451–W454. doi:10.1093/nar/gkl243CrossRefGoogle Scholar
  9. Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gibson TJ, Higgins DG (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23:2947–2948. doi:10.1093/bioinformatics/btm404CrossRefGoogle Scholar
  10. Nakamura Y, Mori K, Saitoh K, Oshima K, Mekuchi M, Sugaya T, Shigenobu Y, Ojima N, Muta S, Fujiwara A, Yasuike M, Oohara I, Hirakawa H, Chowdhury VS, Kobayashi T, Nakajima K, Sano M, Wada T, Tashiro K, Ikeo K, Hattori M, Kuhara S, Gojobori T, Inouye K (2013) Evolutionary changes of multiple visual pigment genes in the complete genome of Pacific bluefin tuna. Proc Natl Acad Sci USA 110:11061–11066. doi:10.1073/pnas.1302051110CrossRefGoogle Scholar
  11. Naya L, Paul S, Valdés-López O, Mendoza-Soto AB, Nova-Franco B, Sosa-Valencia G, Reyes JL, Hernández G (2014) Regulation of copper homeostasis and biotic interactions by microRNA 398b in common bean. PLoS One 9(1):e84416. doi:10.1371/journal.pone.0084416CrossRefGoogle Scholar
  12. Paul S (2017) Identification and characterization of microRNAs and their targets in high-altitude stress-adaptive plant maca (Lepidium meyenii Walp). 3 Biotech 7(2):103. doi:10.1007/s13205-017-0734-5CrossRefGoogle Scholar
  13. Paul S, Kundu A, Pal A (2011) Identification and validation of conserved microRNAs along with their differential expression in roots of Vigna unguiculata grown under salt stress. Plant Cell Tiss Org 105:233–242. doi:10.1007/s11240-010-9857-7CrossRefGoogle Scholar
  14. Rogers K, Chen X (2013) Biogenesis, turnover, and mode of action of plant microRNAs. Plant Cell 25:2383–2399. doi:10.1105/tpc.113.113159CrossRefGoogle Scholar
  15. Saetrom P, Snøve O, Nedland M, Grünfeld TB, Lin Y, Bass MB, Canon JR (2006) Conserved microRNA characteristics in mammals. Oligonucleotides 16:115–144. doi:10.1089/oli.2006.16.115CrossRefGoogle Scholar
  16. Stenvang J, Petri A, Lindow M, Obad S, Kauppinen S (2012) Inhibition of microRNA function by antimiR oligonucleotides. Silence 3:1. doi:10.1186/1758-907X-3-1CrossRefGoogle Scholar
  17. Sun K, Lai EC (2013) Adult-specific functions of animal microRNAs. Nat Rev Genet 14:535–548CrossRefGoogle Scholar
  18. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. Mol Biol Evol 30:2725–2729. doi:10.1093/molbev/mst197CrossRefGoogle Scholar
  19. Wang L, Yao J (2014) The microRNAs important for ovarian and early embryonic development in cattle. Turk J Vet Anim Sci 38:599–605CrossRefGoogle Scholar
  20. Yang W, Liu X, Zhang J, Feng J, Li C, Chen J (2010) Prediction and validation of conservative microRNAs of Solanum tuberosum L. Mol Biol Rep 37:3081–3087. doi:10.1007/s11033-009-9881-zCrossRefGoogle Scholar
  21. Zhang B, Pan X, Cobb GP, Anderson TA (2006) Plant microRNA: a small regulatory molecule with big impact. Dev Biol 289:3–16CrossRefGoogle Scholar
  22. Zhang B, Pan X, Stellwag EJ (2008) Identification of soybean microRNAs and their targets. Planta 229:161–182. doi:10.1007/s00425-008-0818-xCrossRefGoogle Scholar

Copyright information

© Korea Institute of Ocean Science & Technology (KIOST) and the Korean Society of Oceanography (KSO) and Springer Nature B.V. 2018

Authors and Affiliations

  • Sangita Chowdhury Paul
    • 1
    • 2
  • Ashutosh Sharma
    • 3
  • Richa Mehta
    • 4
  • Sujay Paul
    • 1
    • 5
    Email author
  1. 1.Azul Natural S.A. de C.VDurangoMexico
  2. 2.Institute of BiotechnologyNational Autonomous University of MexicoMorelosMexico
  3. 3.School of Engineering and SciencesMonterrey Institute of Technology and Higher EducationQuerétaroMexico
  4. 4.Biotechnology Research Center (CEIB)Autonomous University of Mexico StateCuernavacaMexico
  5. 5.Division of Plant BiologyBose InstituteKolkataIndia

Personalised recommendations