Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Predicting the population growth potential of Bactrocera zonata (Saunders) (Diptera: Tephritidae) using temperature development growth models and their validation in fluctuating temperature condition

Abstract

Bactrocera zonata (Saunders), a serious polyphagous pest of horticultural crops, was studied for temperature based growth potential at ecologically relevant constant temperatures (15, 20, 25, 30 and 35 °C; relative humidity of 60 ± 10% and a photoperiod of 12:12 h L:D) and simulated growth potential parameters were validated with fluctuating temperatures life cycle data under laboratory conditions on artificial diet. Rate summation and cohort updating approaches were used for simulating development and estimating life-table parameters of B. zonata. The results revealed that lower development thresholds as 11.9, 12.7, and 13.6 °C and optimum temperature for survival as 26.01 °C, 26.2 °C and 25.5 °C determined for eggs, larvae and pupae, respectively. Reduction in mean development time of all immature stages occurred with increase in temperature. The highest net reproductive rate (77.64 ± 2.59 females/female/generation), total fecundity (260.20 ± 6.37 individuals/female/generation), intrinsic rate of increase (0.10 ± 0.000 females/female/day) and finite rate of increase (1.10 ± 0.000 females/female/day) were obtained maximum at 30 °C. At lowest extreme temperature (15 °C) tested in present study, females were not able to lay eggs. The temperature between 25 and 28 °C was the most suitable range for B. zonata reproduction and development. This shows that temperature has significant role in determining the climatic suitability for B. zonata in reproduction.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Agarwal, M. L., Kumar, P., & Kumar, V. (1999). Population suppression of Bactrocera dorsalis (Hendel) by Bactrocera zonata (Saunders) (Diptera: Tephritidae) in North Bihar. Shaspa, 6(2), 189–191.

  2. Ahmed, A. A., El-Din, S., El-Din, E., El-Shazly, A., & Marwa, A. F. (2007). Contribution to the effect of temperature on some biological aspects of the peach fruit fly, Bactrocera zonata (Saunders) (Diptera: Tephritidae) reared on artificial diet. Bulletin of Entomolgical Society of Egypt, 84, 121–134.

  3. Briere, J. F., Pracros, P., Le Roux, A. Y., & Pierre, J. S. (1999). A novel rate model of temperature-dependent development for arthropods. Environmental Entomology, 28, 22–29.

  4. Chang, C. L., Caceres, C., & Jang, E. B. (2004). A novel liquid larval diet and its rearing system for melon fly, Bactrocera cucurbitae (Coquillet) (Diptera: Tephritidae). Annals of the Entomological Society of America, 97, 524–528.

  5. Choudhary, J. S., Kumari, A., Das, B., Maurya, S., & Kumar, S. (2012). Diversity and population dynamic of fruit flies species in methyl eugenol based parapheromone traps in Jharkhand region of India. Ecoscan, 1, 57–60.

  6. Curry, G. L., Fieldman, R. M., & Smith, K. C. (1978). A stochastic model for a temperature-dependent population. Theoretical Population Biology, 13, 197–213.

  7. Duyck, P. F., Sterlin, J. F., & Quilici, S. (2004). Survival and development of different life stages of Bactrocera zonata (Diptera: Tephritidae) reared at five constant temperatures compared to other fruit fly species. Bulletin of Entomological Research, 94, 89–93.

  8. Ekesi, S., Nderitu, P. W., & Rwomushana, I. (2006). Field investigation, life history and demographic parameters of Bactrocera invadens Drews, Tsuruta and white, a new invasive fruit fly species in Africa. Bulletin of Entomological Research, 96, 379–386.

  9. Fand, B. B., Tonnang, H. E. Z., Kumar, M., Kamble, A. L., & Bal, S. K. (2014). A temperature-based phenology model for predicting development, survival and population growth potential of mealybug, Phenacoccus solenopsis Tinsley (Hemiptera: Pseudococcidae). Crop Protection, 55, 98–108.

  10. Fand, B. B., Sul, N. T., Bal, S. K., & Minhas, P. S. (2015). Temperature impacts the development and survival of common cutworm (Spodoptera litura): Simulation and visualization of potential population growth in India under warmer temperatures through life cycle modelling and spatial mapping. PLoS One, 10(4), e0124682. https://doi.org/10.1371/journal.pone.0124682.

  11. Fernandes-Da-Silva, P. G., & Zucoloto, F. S. (1993). The influence of host nutritive value on the performance and food selection in Ceratitis capitata (Diptera, Tephritidae). Journal of Insect Physiology, 39, 883–887.

  12. Fetoh, E.-S. A. B., Abdel Gawad, A. A., Shalaby, F. F., & Elyme, M. F. (2012). Temperature-dependent development and degree-days models of the peach fruit Fly Bactrocera zonata (Saunders) and the cucurbit Fly Dacus ciliatus (Loew). International Journal of Environmental Sciences and Engineering, 3, 85–96.

  13. Gupta, D., Verma, A. K., & Bhalla, O. P. (1990). Population of fruit-flies (Dacus zonatus and B. dorsalis) infesting fruit crops in north-western Himalayan region. Indian Journal of Agricultural Sciences, 60(7), 471–474.

  14. Hashem, A. G., Mohamed, S. M. A., & EI-Wakkad, M. F. (2001). Diversity and abundance of Mediterranean and peach fruit flies (Diptera: Tephritidae) in different horticultural orchards. Egyptian Journal of Applied Sciences, 16, 303–314.

  15. Kroschel, J., Sporleder, M., Tonnang, H. E. Z., Juarez, H., Carhuapoma, P., Gonzales, J. C., & Simon, R. (2013). Predicting climate-change-caused changes in global temperature on potato tuber moth Phthorimaea operculella (Zeller) distribution and abundance using phenology modeling and GIS mapping. Agricultural and Forest Meteorology, 15, 228–241.

  16. Logan, J. A., Wollkind, D. J., Hoyt, S. C., & Tanigoshi, L. K. (1976). An analytical model for description of temperature dependent phenomenon in arthropods. Environmental Entomology, 5, 1133–1140.

  17. Mohamed, A. M. (2000). Effect of constant temperature on the development of the peach fruit fly, Bactrocera zonata (Saunder) (Diptera: Tephritidae). Assuit Journal of Agricultural Sciences, 31(2), 329–337.

  18. Ni, W. L., Li, Z. H., Chen, H. J., Wan, F. H., Qu, W. W., Zhang, Z., & Kriticos, D. J. (2012). Including climate change in pest risk assessment: The peach fruit fly, Bactrocera zonata (Diptera: Tephritidae). Bulletin of Entomological Research, 102, 173–183.

  19. OEPP/EPPO. (2005). Data sheets on quarantine pests. OEPP/EPPO Bulletin, 35, 371–373.

  20. Papadopoulos, N. T., Katsoyannos, B. I., & Carey, J. R. (2002). Demographic parameters of the Mediterranean fruit fly (Diptera: Tephritidae) reared in apple. Annals of the Entomological Society of America, 95(5), 564–569.

  21. Qureshi, Z. A., Ashraf, M., Bughio, A. R., & Hussian, T. (1974). Rearing, reproductive behaviour and gamma sterilization of fruit fly, Dacus zonatus (Saund.) (Diptera- Tephritidae). Entomologia Experimentalis et Applicata, 17, 504–510.

  22. Sanjeev, R., Uma, S., Bhagat, R. M., & Gupta, S. P. (2008). Population dynamics and succession of fruit fly on sub-tropical fruits under rainfed condition in Jammu region. Indian Journal of Entomology, 70(1), 12–15.

  23. Sharpe, P. J. H., Curry, G. L., & DeMichele, D. W. (1977). Distribution models of organism development times. Journal of Theoretical Biology, 66, 21–38.

  24. Shinwari, I., Khan, S., Khan, M. A., Ahmad, S., Shah, S. F., Mashwani, M. A., & Khan, M. A. (2015). Evaluation of artificial larval diets for rearing of fruit fly Bactrocera zonata (Diptera: Tephritidae) under laboratory condition. Journal of Entomology and Zoological Studies, 3(4), 189–193.

  25. Sporleder, M., Kroschel, J., Gutierrez, Q. M. R., & Lagnaoui, A. (2004). A temperature-based simulation model for the potato tuberworm, Phthorimaea operculella Zeller (Lepidoptera; Gelechiidae). Environmental Entomology, 33, 477–486.

  26. Sporleder, M., Carhuapoma, P., Tonnang, E.Z.H., Juarez, H., Gamarra, H., Simon, R. & Kroschel, J. (2017). ILCYM - insect life cycle modeling. A software package for developing temperature-based insect phenology models with applications for local, regional and global analysis of insect population and mapping. Lima (Peru): International Potato Center. pp. 175.

  27. Srinivasa Rao, M., Manimanjari, D., Rama Rao, C. A., Swathi, P., & Maheswari, M. (2014). Effect of climate change on Spodoptera litura fab. On peanut: A life table approach. Crop Protection, 66, 98–106.

  28. Vargas, R. I., Walsh, W. A., Kanehisa, D. T., Jang, E. B., & Armstrong, J. W. (1997). Demography of four Hawaiian fruit flies (Diptera: Tephritidae) reared at five constant temperatures. Annals of the Entomological Society of America, 90, 162–168.

  29. Vargas, R. I., Walsh, W. A., Kanehisa, D., Stark, J. D., & Nishida, T. (2000). Comparative demography of three Hawaiian fruit flies (Diptera: Tephritidae) at alternating temperatures. Annals of the Entomological Society of America, 93(1), 75–81.

  30. Vayssières, J. F., Carel, Y., Coubes, M., & Duyck, P. F. (2008). Development of immature stages and comparative demography of two cucurbit-attacking fruit flies in Reunion Island: Bactrocera cucurbitae and Dacus ciliatus (Diptera: Tephritidae). Environmental Entomology, 37(2), 307–314.

  31. Wagner, T. L., Wu, H. I., Sharpe, P. J. H., & Coulson, R. N. (1984). Modelling distributions of insect development time: A literature review and application of the Weibull function. Annals of the Entomological Society of America, 77, 474–487.

  32. Wang, R., Lan, Z., & Ding, Y. (1982). Studies on mathematical models of the relationship between insect development and temperature. Acta Ecologica Sinica, 2, 47–57.

Download references

Acknowledgments

This work was supported by the Ministry of Agriculture, Government of India through the National Innovations on Climate Resilient Agriculture (NICRA) project under the Indian Council of Agricultural Research (ICAR) (ICAR-RCER/RC R/E.F./2011/29). We authors are grateful to Dr Carhuapoma Pablo (CIP) and anonymous reviewers for giving valuable suggestions.

Author information

Correspondence to Jaipal Singh Choudhary.

Ethics declarations

Disclosure statement

The authors declare no conflicts of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Choudhary, J.S., Mali, S.S., Naaz, N. et al. Predicting the population growth potential of Bactrocera zonata (Saunders) (Diptera: Tephritidae) using temperature development growth models and their validation in fluctuating temperature condition. Phytoparasitica 48, 1–13 (2020). https://doi.org/10.1007/s12600-019-00777-4

Download citation

Keywords

  • Growth model
  • Bactrocera zonata
  • Life table parameters
  • Survivorship
  • Fecundity