Advertisement

Springer Nature is making Coronavirus research free. View research | View latest news | Sign up for updates

Systematicity, persistence and efficacy of selected insecticides used in endotherapy to control the red palm weevil Rhynchophorus ferrugineus (Olivier, 1790) on Phoenix canariensis

  • 48 Accesses

Abstract

The control of the invasive red palm weevil (RPW) Rhynchophorus ferrugineus (Olivier, 1790) is a challenge. This pest has a cryptic behavior, as it achieves most of its life cycle within host tissues, where larval instars are endophytic and are out of reach from insecticides applied as cover sprays. In order to increase the efficacy of chemical control, stem injection technique, known also as endotherapy, has been implemented and recommended as an alternative approach, which requires the use of highly systemic and persistent insecticides. In this paper, we report the results of endotherapy essays carried out on ornamental palm trees, Phoenix canariensis Chabaud in Carthage, Tunis (Tunisia) and Catania, Sicily (Italy), between 2015 and 2018, using thiamethoxam, emamectin benzoate and imidacloprid. The mobility, persistence and efficacy of these insecticides were evaluated. We found that emamectin benzoate is more systemic and persistent (up to 5 months) in palm tissues than thiamethoxam and imidacloprid. Maximum residues of emamectin benzoate (1.87 mg\kg) were detected in leaf base samples, 10 days after its injection. Residues of imidacloprid were detected 10 days after application (0.194 mg\kg), with a maximum (0.277 mg\kg) registered 2 months after its injection with a persistence period up to 3 months. Residues of thiamethoxam were detected (0.123 mg\kg) only once, 10 days after application. Then values were below the limit of detection (0.1 mg\kg). Field essays with selected insecticides applied as preventive and curative endotherapy treatments showed that emamectin benzoate is able to protect palm trees from RPW infestation up to 9 months.

This is a preview of subscription content, log in to check access.

Fig. 1

References

  1. Ahmed, M. A., Abdelbagi, A. O., & Elshafie, H. A. (2010). Trunk injection with neonictoniods insecticides to control the green pit scale insect (Palmapsis phoenicis Ramachandra Rao) (Homoptera: Asterolecaniidae) infesting date palm in northern Sudan. Acta Horticulturae, 882, 937–955.

  2. Al-Dosary, N. M. N., Al-Dobai, S., & Faleiro, J. R. (2016). Review on the management of red palm weevil Rhynchophorus ferrugineus olivier in date palm Phoenix dactylifera L. Emirates Journal of Food and Agriculture, 28(1), 34–44.

  3. Al-Samarraie, A. I., Al-Hafdh, E., Abdul-Majed, K., & Basumy, M. A. (1989). The chemical control of the lesser date moth, Batrachedra amydraula Meyr. and residue levels of organophosphate insecticides in dates. Pesticide Science, 25(3), 227–230.

  4. Al-Shawaf, A., Al-Shagag, A., Al-Bagshi, M., Al-Saroj, S., Al-Bather, S., Al-Dandan, A. M., & Faleiro, J. R. (2013). A quarantine protocol against red palm weevil Rhynchophorus ferrugineus (Olivier) (Coleptera: Curculiondae) in date palm. Journal of Plant Protection Research, 53(4), 409–415.

  5. Avand-Faghih, A. (2004). Identification et application agronomique de synergistes végétaux de la phéromone du charançon Rhynchophorus ferrugineus (Olivier) 1790. Doctoral dissertation, INAPG (AgroParisTech).

  6. Bourdrez, P., Delgado, R., & Wyss, P. (2014). Invasive tree pest control by emamectin benzoate tree micro injection. Resource document. Association Française de la Protection des Plantes–colloque ravageurs et insectes invasifs et émergents, Montpellier–21 Octobre 2014. https://fredoncorse.com/standalone/5/DA3892S5BGXc1v5Npf35v6aM.pdf?site=fr&objectId=1731. Accessed 8 July 2019.

  7. Chebbi, H. (2011). First record of Rhynchophorus ferrugineus on Phoenix canariensis in Tunisia. Tunisian Journal of Plant Protection, 6(2), 149–154.

  8. Coslor, C. C., Vandervoort, C., & Wise, J. C. (2019). Insecticide dose and seasonal timing of trunk injection in apples influence efficacy and residues in nectar and plant parts. Pest Management Science, 75(5), 1453–1463.

  9. Cox, M. L. (1993). Red palm weevil, Rhynchophorus ferrugineus in Egypt. FAO Plant Protection Bulletin, 41, 30–31.

  10. Dembilio, Ó., Riba, J. M., Gamón, M., & Jacas, J. A. (2014). Mobility and efficacy of abamectin and imidacloprid against Rhynchophorus ferrugineus in Phoenix canariensis by different application methods. Pest Management Science, 71(8), 1091–1098.

  11. Di Ilio, V., Metwaly, N., Saccardo, F., & Caprio, E. (2018). Adult and egg mortality of Rhynchophorus ferrugineus Oliver (Coleoptera: Curculionidae) induced by thiamethoxam and clothianidin. Journal of Agriculture and Veterinary Science, 11(2), 59–67.

  12. EOPP. (2007). Rhynchophorus ferrugineus and Rhynchophorus palmarum. EPPO Bulletin, 37(3), 571–579.

  13. Faleiro, J. R. (2006). A review of the issues and management of the red palm weevil Rhynchophorus ferrugineus (Coleoptera: Rhynchophoridae) in coconut and date palm during the last one hundred years. International Journal of Tropical Insect Science, 26(3), 135–154.

  14. Faleiro, J. R., Abdallah, A. B., El-Bellaj, M., Al-Ajlan, A. M., & Oihabi, A. (2012). Threat of the red palm weevil, Rhynchophorus ferrugineus (Olivier) to date palm plantations in North Africa. Arab Journal of Plant Protection, 30(2), 274–280.

  15. Fanigliulo, A., & Sacchetti, M. (2008). Emamectin benzoate: New insecticide against Helicoverpa armigera. Communications in Agricultural and Applied Biological Sciences, 73(3), 651–654.

  16. Ferry, M., & Gomez, S. (2012). Red palm weevil, focus on it control. Phytoma, 658, 38–41.

  17. Ferry, M., & Gomez, S. (2014). Assessment of risks and potential of injection techniques in integrated programs to eradicate the red palm weevil: Review and new perspectives. Fruits, 69(2), 143–157.

  18. Fiaboe, K. K. M., Peterson, A. T., Kairo, M. T. K., & Roda, A. L. (2012). Predicting the potential worldwide distribution of the red palm weevil Rhynchophorus ferrugineus (Olivier) (Coleoptera: Curculionidae) using ecological niche modeling. Florida Entomologist, 95(3), 659–673.

  19. Giblin-Davis, R. M., Faleiro, J. R., Jacas, J. A., Peña, J. E., & Vidyasagar, P. S. P. V. (2013). Biology and management of the red palm weevil, Rhynchophorus ferrugineus. In J. E. Peña (Ed.), Potential invasive pests of agricultural crops (pp. 1–34). Florida: CABI.

  20. Hernandez-Marante, D., Folk, F., Sanchez, A., & Fernandez-Escobar, R. (2003). Control of red palm weevil (Rhynchophorus ferrugineus Olivier) using trunk injections and foliar sprays. Boletin de Sanidad Vegetal, Plagas, 29(4), 563–573.

  21. Jacas, J. A., Dembilio, Ó., & Llacer, E. (2011). Research activities focused on management of red palm weevil at the UJI-IVIA associated unit (region of Valencia, Spain). EPPO Bulletin, 41(2), 122–127.

  22. Kaakeh, W. (2006). Toxicity of imidacloprid to developmental stages of Rhynchophorus ferrugineus (Curculionidae: Coleoptera): Laboratory and field tests. Crop Protection, 25, 432–439.

  23. Khalaf, M. Z., & Alrubeai, H. F. (2016). Chemical control of date palm tree borers, Oryctes species (Coleoptera: Scrabaidae: Dynastinae). Pakistan Entomologist, 38(1), 1–5.

  24. Kielbaso, J. J., Davidson, H., Hart, J., Jones, A., & Kennedy, M. K. (1979). Characteristics of successful systemic chemicals. In J. J. Kielbaso, J.J., et al. (Ed.), Proceedings of symposium on systemic chemical treatment in tree culture (pp. 19–34). East Lansing, MI.

  25. Kontodimas, D., Soroker, V., Pontikakos, C., Suma, P., Beaudoin-Ollivier, L., Karamaouna, F., & Riolo, P. (2016). Visual identification and characterization of Rhynchophorus ferrugineus and Paysandisia archon infestation. In V. Soroker & S. Colazzan (Eds.), Handbook of major palm pests: Biology and management (pp. 187–2018). Chichester: John Wiley & Sons, Ltd..

  26. Llopis, V. N., González, S. V., Jaques, J. A., Moraga, E. Q., Vives, Ó. D., & Moya, P. (2018). Desarrollo de un sistema de atracción-infección para el control del picudo rojo de la palmera (Rhynchophorus ferrugineus) mediante hongos entomopatógenos. Phytoma España, 298, 36–39.

  27. MAGRAMA (2014). Registro de Productos Fitosanitarios. https://www.mapa.gob.es/es/agricultura/temas/sanidad-vegetal/productos-fitosanitarios/registro/menu.asp. Accessed 6 July 2019.

  28. Mashal, M. M., & Obeidat, B. F. (2019). The efficacy assessment of emamectin benzoate using micro injection system to control red palm weevil. Heliyon, 5(6), e01833.

  29. Murphy, S. T., & Briscoe, B. R. (1999). The red palm weevil as an alien invasive: Biology and the prospects for biological control as a component of IPM. Biocontrol News and Information, 20, 35–46.

  30. Nabawy, M. (2010). Metwaly method endotherapic injection for palm trees, the new methods used to control the red palm weevil (Rhynchophorus ferrugineus Olivier). Acta Horticulturae, 882, 977–984.

  31. Pasquier, J. L. (2013). The endotherapy control of the horse chestnut leaf miner. Horticulture Romande, 6, 20–21.

  32. Peri, E., Colazza, S., Guarino, S., Suma, P., Pergola, A., & Longo, S. (2013). The red palm weevil in Sicily: The introduction and spread of an invasive alien species. In proceedings of the palm pest mediterranean conference (pp. 171-177). Nice, France, 16-18 January 2013. Association Française de protection des Plantes (AFPP).

  33. Rochat, D., Chapin, E., Ferry, M., Avand-Faghih, A., & Brun, L. (2006). Le charançon rouge du palmier dans le bassin méditerranéen. Phytoma-La Défense des Végetaux, 595, 20–24.

  34. Rochat, D., Dembilio, Ó., Jaques, A. J., Suma, P., La Pergola, A., Hamidi, R., Kontodimas, D., & Soroker, V. (2017). Rhynchophorus Ferrugineus: Taxonomy, distribution, biology, and life cycle. In V. Soroker & S. Colazza (Eds.), Cycle handbook of major palm pests: Biology and management (pp. 69–104). West Sussex: John Wiley & Sons Ltd..

  35. Shawir, M. S., Abbassy, M. A., & Salem, Y. M. (2014). Laboratory Evaluation of some Insecticides against Larval and Adult Stages of Red Palm Weevil’s Rhynchophorus ferrugineus (Olivier). Alexandria Science Exchange Journal, 35(2), 75–79.

  36. Soroker, V., Suma, P., La Pergola, A., Liopis, N. V., Vacas, S., Cohen, Y., Alchanatis, V., Milonas, P., Golomb, O., Goldshtein, E., El Banna, A. M. & Hetzroni, A. (2017). Surveillance techniques and detection methods for Rhynchophorus ferrugineus and Paysandisia archon. Handbook of Major Palm Pests: Biology and Management. John Wiley & Sons, Ltd, Chichester

Download references

Acknowledgments

This study was partly supported by the University of Catania in the framework of the research project “Emergent pests and pathogens and relative sustainable stratergies-5A722192113. Financial support from Food and Agriculture Organization (FAO) of the United Nation (UN) to purchase palm trees for the experiments carried out in Sicily, is also gratefully acknowledged. We thank Dr. Noureddine Nasr, Plant Production and Protection Officer in FAO-Subregional Office for North Africa for his support in accomplishing this work. Thanks go also to Mr. Abdelkader Fatnassi for his help and financial support. Mohamed Lahbib Ben Jamaa (Ministry of Agriculture of Tunisia) allowed us to access to the Laboratory of Control and Analyzes of Pesticides. Sabrine Chihaoui-Meridja received a grant from the Tunisian Ministry of High Education and Scientific Research.

Author information

Correspondence to Brahim Chermiti.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Chihaoui-Meridja, S., Harbi, A., Abbes, K. et al. Systematicity, persistence and efficacy of selected insecticides used in endotherapy to control the red palm weevil Rhynchophorus ferrugineus (Olivier, 1790) on Phoenix canariensis. Phytoparasitica 48, 75–85 (2020). https://doi.org/10.1007/s12600-019-00776-5

Download citation

Keywords

  • Red palm weevil
  • Trunk injection
  • Pesticides
  • Mortality
  • Mobility
  • Persistence