Advertisement

Macrolophus pygmaeus (Hemiptera: Miridae) foraging on tomato leaves from different plant strata

  • Nomi Sarmah
  • Anjumoni Devee
  • Dionyssios PerdikisEmail author
Article
  • 11 Downloads

Abstract

This study investigates the foraging activity of the generalist predator Macrolophus pygmaeus (Rambur) (Hemiptera: Miridae) on tomato leaves of different vertical plant strata (apex, top, middle and lower). On a leaflet of each tested leaf, ten 2nd instar nymphs of the aphid Myzus persicae were established with the aid of harmless glue, as prey. It was observed that prey consumption was highest on the lower leaves. There was no significant difference in prey consumption between middle and top leaves but it significantly reduced on the apex leaves as compared to the top and the lower leaves. Behavioural observations were conducted to assess the time budgets (i.e. time spent in each activity such as searching, resting, grooming) of the foraging predator on leaves of each plant strata. The predator spent significantly more time in grooming on apex than on lower leaves whereas it showed a higher tendency to fall off from the apex leaves than the leaves of the other plant strata. The apex leaves had the highest trichome density and this may impede movement of the predator. In the third experiment, the prey consumption of M. pygmaeus nymphs was reduced with the increase of distance between its release point and the prey patch on a tomato plant. In conclusion, M. pygmaeus nymphs are most efficient in foraging on the middle or lower leaves of young tomato plants whereas their prey searching efficiency is influenced by the distance between their release point and the prey patch. Therefore, the efficacy of M. pygmaeus nymphs in pest control may be benefited if released close to prey patches but not on the apex leaves.

Keywords

Biological control Macrolophus pygmaeus Prey searching behavior Time allocation Vertical plant strata 

Notes

Acknowledgements

This research was supported by the European Commission by Erasmus Mundus BRAVE fellowship. We offer special thanks to Erasmus Mundus BRAVE Coordinator Dr. Andreas Voloudakis, Agricultural University of Athens, Greece. Many thanks are due to Dr. Apurba K. Barman, University of Georgia, USA, and Dr. Argyro Fantinou, Professor, Agricultural University of Athens, Greece, for their valuable comments in an earlier draft of the manuscript.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. Adedipe, F., & Park, Y. L. (2012). Effect of plant characteristics and within-plant distribution of prey on colonization efficiency of Cryptolaemus montrouzieri (Coleoptera: Coccinellidae) adults. Psyche Article ID 503543–5.  https://doi.org/10.1155/2012/503543 CrossRefGoogle Scholar
  2. Andow, D. A., & Prokrym, D. R. (1990). Plant structural complexity and host-finding by a parasitoid. Oecologia, 82, 162–165.  https://doi.org/10.1007/BF00323530.CrossRefPubMedGoogle Scholar
  3. Arnó, J., Castañé, C., Riudavets, J., & Gabarra, R. (2010). Risk of damage to tomato crops by the generalist zoophytophagous predator Nesidiocoris tenuis (Reuter) (Hemiptera: Miridae). Bulletin of Entomological Research, 100, 105–115.CrossRefPubMedGoogle Scholar
  4. Aysan, E., & Kumral, N. A. (2018). Tritrophic relationships among tomato cultivars, the rust mite, Aculops lycopersici (Massee) (Eriophyidae), and its predators. Acarologia, 58, 5–17.Google Scholar
  5. Belcher, D. W., & Thurston, R. (1982). Inhibition of movement of larvae of the convergent lady beetle by leaf trichomes of tobacco. Environmental Entomology, 11, 91–94.CrossRefGoogle Scholar
  6. Björkman, C., & Ahrné, K. (2005). Influence of leaf trichome density on the efficiency of two polyphagous insect predators. Entomologia Experimentalis et Applicata, 115, 179–186.CrossRefGoogle Scholar
  7. Bottega, D. B., Souza, B. H. S. D., Rodrigues, N. E. L., Eduardo, W. I., Barbosa, J. C., & Boiça Júnior, A. L. (2017). Resistant and susceptible tomato genotypes have direct and indirect effects on Podisus nigrispinus preying on Tuta absoluta larvae. Biological Control, 106, 27–34.  https://doi.org/10.1016/j.biocontrol.2016.12.006.CrossRefGoogle Scholar
  8. Bouagga, S., Urbaneja, A., & Hedo, M. P. (2018). Combined use of predatory mirids with Amblyseius swirskii (Acari: Phytoseiidae) to enhance pest management in sweet pepper. Journal of Economic Entomology.  https://doi.org/10.1093/jee/toy072.CrossRefPubMedGoogle Scholar
  9. Bueno, V. H. P., Lins Jr., J. C., Silva, D. B., & van Lenteren, J. C. (2019). Is predation of Tuta absoluta by three Neotropical mirid predators affected by tomato lines with different densities in glandular trichomes? Arthropod-Plant Interactions, 131, 41–48.CrossRefGoogle Scholar
  10. Cassis, G., & Schuh, R. T. (2012). Systematics, biodiversity, biogeography, and host associations of the Miridae (Insecta, Hemiptera, Heteroptera: Cimicomorpha). Annual Review of Entomology, 57, 377–404.CrossRefPubMedGoogle Scholar
  11. De Clercq, P., Mohaghegh, J., & Tirry, L. (2000). Effect of host plant on the functional response of the predator Podisus nigrispillus (Heteroptera: Pentatomidae). Biological Control.  https://doi.org/10.1006/bcon.1999.0808.CrossRefGoogle Scholar
  12. Economou, L. P., Lykouressis, D. P., & Barbetaki, A. E. (2006). Time allocation of activities of two heteropteran predators on the leaves of three tomato cultivars with variable glandular trichome density. Environmental Entomology.  https://doi.org/10.1603/0046-225X-35.2.387.CrossRefGoogle Scholar
  13. Fantinou, A. A., Perdikis, D. C., Maselou, D. A., & Lambropoulos, P. D. (2008). Prey killing without consumption: Does Macrolophus pygmaeus show adaptive foraging behaviour? Biological Control.  https://doi.org/10.1016/j.biocontrol.2008.08.004.CrossRefGoogle Scholar
  14. Fantinou, A. A., Perdikis, D. C., Labropoulos, P. D., & Maselou, D. A. (2009). Preference and consumption of Macrolophus pygmaeus preying on mixed instar assemblages of Myzus persicae. Biological Control.  https://doi.org/10.1016/j.biocontrol.2009.06.006.CrossRefGoogle Scholar
  15. Galdino, T. V. D., Picanço, M. C., Ferreira, D. O., Silva, G. A. R., de Souza, T. C., & Silva, G. A. (2015). Is the performance of a specialist herbivore affected by female choices and the adaptability of the offspring? PLoS One, 10(11), e0143389.  https://doi.org/10.1371/journal.pone.0143389.CrossRefPubMedCentralPubMedGoogle Scholar
  16. Gassmann, A. J., & Hare, J. D. (2005). Indirect cost of a defensive trait: Variation in trichome type affects the natural enemies of herbivorous insects on Datura wrightii. Oecologia, 144, 62–71.  https://doi.org/10.1007/s00442-005-0038-z.CrossRefPubMedGoogle Scholar
  17. Garcia, J. F., & O’Neil, R. J. (2000). Effect of coleus size and variegation on attack rates, searching strategy, and selected life history characteristics of Cryptolaemus montrouzieri (Coleoptera: Coccinellidae). Biological Control, 18, 225–234.  https://doi.org/10.1006/bcon.2000.0831.CrossRefGoogle Scholar
  18. Gontijo, L. M. (2008). Effects of plant architecture and prey distribution on the foraging efficiency and behavior of the predatory mite Phytoseiulus persimilis (Acari: Phytoseiidae). Biological Control, 53, 136–141.CrossRefGoogle Scholar
  19. Gontijo, L. M., Margolies, D. C., Nechols, J. R., & Cloyd, R. A. (2010). Plant architecture, prey distribution and predator release strategy interact to affect foraging efficiency of the predatory mite Phytoseiulus persimilis (Acari: Phytoseiidae) on cucumber. Biological Control.  https://doi.org/10.1016/j.biocontrol.2009.11.007.CrossRefGoogle Scholar
  20. Gontijo, L. M., Nechols, J. R., Margolies, D. C., & Cloyd, R. A. (2012). Plant architecture and prey distribution influence foraging behavior of the predatory mite Phytoseiulus persimilis (Acari: Phytoseiidae). Experimental and Applied Acarology, 56, 23–32.CrossRefGoogle Scholar
  21. Grevstad, F., & Klepetka, B. W. (1992). The influence of plant architecture on the foraging efficiencies of a suite of ladybird beetles feeding on aphids. Oecologia, 92, 399–404.CrossRefGoogle Scholar
  22. Hassanpour, M., Bagheri, M., Golizadeh, A., & Farrokhi, S. (2016). Functional response of Nesidiocoris tenuis (Hemiptera: Miridae) to Trialeurodes vaporariorum (Hemiptera: Aleyrodidae): Effect of different host plants. Biocontrol Science and Technology, 26(11), 1489–1503.  https://doi.org/10.1080/09583157.2016.1216521.CrossRefGoogle Scholar
  23. Kanno, H., & Harris, M. O. (2000). Leaf physical and chemical features influence selection of plant genotypes by hessian fly. Journal of Chemical Ecology, 26, 2335–2354.CrossRefGoogle Scholar
  24. Kauffman, W. C., & Kennedy, G. G. (1989). Relationship between trichome density in tomato and parasitism of Heliothis spp. (Hymenoptera: Trichogrammatidae). Environmental Entomology, 18, 698–704.CrossRefGoogle Scholar
  25. Krips, O. E., Kleijn, P. W., Willems, P. E. L., Gols, G. J. Z., & Dicke, M. (1999). Leaf hairs influence searching efficiency and predation rate of the predatory mite Phytoseiulus persimilis (Acari: Phytoseiidae). Experimental and Applied Acarology, 23, 119–131.CrossRefGoogle Scholar
  26. Marquis, R. J., & Whelan, C. (1996). Plant morphology and recruitment of the third trophic level: Subtle and little-recognized defences? Oikos, 75, 330–334.CrossRefGoogle Scholar
  27. Merrill, R. M., Gutiérrez, D., Lewis, O. T., Gutiérrez, J., Díez, S. B., & Wilson, R. J. (2008). Combined effects of climate and biotic interactions on the elevational range of a phytophagous insect. Journal of Animal Ecology, 77, 145–155.CrossRefGoogle Scholar
  28. Montserrat, M., Albajes, R., & Castañé, C. (2004). Behavioral responses of three plant-inhabiting predators to different prey densities. Biological Control.  https://doi.org/10.1016/j.biocontrol.2004.01.006.CrossRefGoogle Scholar
  29. Moreno-Ripoll, R., Agustí, N., Berruezo, R., & Gabarra, R. (2012). Conspecific and heterospecific interactions between two omnivorous predators on tomato. Biological Control.  https://doi.org/10.1016/j.biocontrol.2012.04.005.CrossRefGoogle Scholar
  30. Obrycki, J. J. (1986). The influence of foliar pubescence on entomophagous species In: D. J. Boethel & R. D. Eikenbarry (Eds.), Interactions of Plant Resistance and Parasitoids and Predators of Insects, (pp. 61–83), Wiley, New York.Google Scholar
  31. Perdikis, D., Lykouressis, D., & Economou, L. P. (1999). The influence of temperature, photoperiod and plant type on the predation rate of Macrolophus pygmaeus Rambur on Myzus persicae (Sulzer). Biological Control, 44, 281–289.Google Scholar
  32. Perdikis, D., Lucas, E., Garantonakis, N., Giatropoulos, A., Kitsis, P., Maselou, D., et al. (2009). Intraguild predation between Macrolophus pygmaeus and Nesidiocoris tenuis. IOBC/wprs Bulletin, 49, 301–305.Google Scholar
  33. Perdikis, D., Lucas, E., Garantonakis, N., Giatropoulos, A., Kitsis, P., Maselou, et al. (2014). Intraguild predation and sublethal interactions between two zoophytophagous mirids, Macrolophus pygmaeus and Nesidiocoris tenuis. Biological Control,  https://doi.org/10.1016/j.biocontrol.2013.12.003 CrossRefGoogle Scholar
  34. Ryoo, M. I. (1996). Influence of the spatial distribution pattern of prey among patches and spatial coincidence on the functional and numerical response of Phytoseiulus persimilis (Acarina, Phytoseiidae). Journal of Applied Entomology, 120, 187–192.CrossRefGoogle Scholar
  35. Sanchez, J. A., del Amor, F. M., Flores, P., & Lopez-Gallego, E. (2016). Nutritional variations at Nesidiocoris tenuis feeding sites and reciprocal interactions between the mirid and tomato plants. Journal of Applied Entomology, 140, 161–173.  https://doi.org/10.1111/jen.12246.CrossRefGoogle Scholar
  36. Sanchez, J.A., López-Gallego, E., Pérez-Marcos, M., Perera-Fernández, L.G. & Ramírez-Soria, M.J. (2018). How safe is it to rely on Macrolophus pygmaeus (Hemiptera: Miridae) as a biocontrol agent in tomato crops? Frontiers in Ecology and Evolution, 6(SEP), 132  https://doi.org/10.3389/fevo.2018.00132
  37. SAS Institute (2018). JMP version 14.1.0. SAS Institute Inc.Google Scholar
  38. Skirvin, D. J., & Fenlon, J. S. (2001). Plant species modifies the functional response of Phytoseiulus persimilis (Acari: Phytoseiidae) to Tetranychus urticae (Acari: Tetranychidae): Implications for biological control. Bulletin of Entomological Research, 91, 61–67.PubMedGoogle Scholar
  39. Stavrinides, M. C., & Skirvin, D. J. (2003). The effect of chrysanthemum leaf trichome density and prey spatial distribution on predation of Tetranychus urticae (Acari: Tetranychidae) by Phytoseiulus persimilis (Acari: Phytoseiidae). Bulletin of Entomological Research.  https://doi.org/10.1079/BER2003243.CrossRefPubMedGoogle Scholar
  40. Urbaneja, A., Gonzalez Cabrera, J., Arnó, J., & Gabarra, R. (2012). Prospects for the biological control of Tutaabsoluta in tomatoes of the Mediterranean basin. Pest Management Science, 68, 1215–1222.CrossRefGoogle Scholar
  41. Verheggen, F. J., Capella, Q., Schwartzberg, E. G., Voigt, D., & Haubruge, E. (2009). Tomato-aphid-hoverfly: A tritrophic interaction incompatible for pest management. Arthropod-Plant Interactions, 3, 141–149.  https://doi.org/10.1007/s11829-009-9065-8.CrossRefGoogle Scholar
  42. Wheeler, A. G., & Krimmel, B. (2015). Mirid (Hemiptera: Heteroptera) specialists of sticky plants: Adaptations, interactions, and ecological implications. Annual Review of Entomology, 60, 393–414.CrossRefGoogle Scholar
  43. Zappala, L., Biondi, A., Alma, A., Al-jboory, I. J., Arnó, J., Bayram, A., et al. (2013). Natural enemies of the south American moth, Tuta absoluta, in Europe, North Africa and Middle East, and their potential use in pest control strategies. Journal of Pest Science, 86, 635–647.CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  • Nomi Sarmah
    • 1
    • 2
  • Anjumoni Devee
    • 1
    • 2
  • Dionyssios Perdikis
    • 1
    Email author
  1. 1.Laboratory of Agricultural Zoology and EntomologyAgricultural University of AthensAthensGreece
  2. 2.Department of EntomologyAssam Agricultural UniversityJorhatIndia

Personalised recommendations