Defense responses of Capsicum spp. genotypes to post-harvest Colletotrichum sp. inoculation

  • Henrique Kuhn Massot Padilha
  • Nathalia de Avila Madruga
  • Bianca Camargo Aranha
  • Jessica Fernanda Hoffmann
  • Rosane Lopes Crizel
  • Rosa Lia Barbieri
  • Fabio Clasen ChavesEmail author


Pepper (Capsicum spp.) cultivars resistant to anthracnose are not commercially available and depending on conducive environmental conditions the crop faces significant yield losses. Pepper genotypes from a germplasm collection were screened for resistance to anthracnose. Unripe and ripe mature fruit of selected genotypes were inoculated post-harvest with Colletotrichum sp. Plant disease resistance-associated parameters were evaluated, and complete resistance was not observed in any genotype. Genotype P27 (Capsicum baccatum) showed the most disease resistance, while P175 (Capsicum chinense) showed the greatest disease susceptibility. These contrasting individuals for disease response were further investigated in an attempt to better understand pepper defense mechanisms. A response to disease common to both resistant and susceptible genotypes involved changes in threitol, carotenoids, and soluble solids contents, and ascorbate peroxidase enzyme activity. Disease incidence and severity was dependent on ripening stage and involved the accumulation of polar compounds butane-2,3-diol, fructose, and phenolics, and superoxide dismutase and peroxidase activities.


Solanaceae Genetic diversity Anthracnose Disease resistance Redox enzymes Metabolomics 



The authors would like to thank Dr. Bernardo Ueno from the Plant Pathology Laboratory of Embrapa Temperate Agriculture, Pelotas for providing the Colletotrichum sp. isolate, SDECT-RS (Programa de Apoio aos Polos Tecnológicos) for financial support for research, and CNPq for financial support for research and scholarships.

Compliance with ethical standards

Conflict of interest

All authors declare no conflict of interest.


  1. Abhayashree, M. S., Murali, M., & Amruthesh, K. N. (2016). Abiotic elicitors mediated resistance and enhanced defense related enzymes in Capsicum annuum L. against anthracnose disease. Sci. Hort., 204, 172–178.CrossRefGoogle Scholar
  2. Acunha, T. S., Crizel, R. L., Tavares, I. B., Barbieri, R. L., Pereira, C. M. P., Rombaldi, C. V., & Chaves, F. C. (2017). Bioactive compound variability in a Brazilian Capsicum pepper collection. Crop Science, 65, 523–532.Google Scholar
  3. Ali, A., Bordoh, P. A., Singh, A., Siddiqui, Y., & Droby, S. (2016). Post-harvest development of anthracnose in pepper (Capsicum spp.): Etiology and management strategies. Crop Prot, 90, 132–141.CrossRefGoogle Scholar
  4. AOAC. (2005). Official methods of analysis of the Association of Official Analytical Chemists International (16th edition). AOAC International: Arlington, Texas.Google Scholar
  5. Baba, V. Y., Constantino, L. V., Ivamoto, S. T., Moreira, A. F. P., Madeira, T. B., Nixdorf, S. L., Rodrigues, R., & Gonçalves, L. S. A. (2019). Capsicum-Colletotrichum interaction: Identification of resistance sources and quantification of secondary metabolites in unripe and ripe fruits in response to anthracnose infection. Sci. Hort., 246, 469–477.CrossRefGoogle Scholar
  6. Bosland, P. W., & Votava, E. J. (2012). Peppers: Vegetable and spice Capsicum (2nd edition). Cambridge: CABI.CrossRefGoogle Scholar
  7. ChunYing, S., Li, M. S., Hai, Z. Z., Alain, P., Hao, W. L., & Xi, B. Z. (2015). Resistances to anthracnose (Colletotrichum acutatum) of Capsicum mature green and ripe fruit are controlled by a major dominant cluster of QTLs on chromosome P5. Scientia Horticulturae, 181, 81–88.CrossRefGoogle Scholar
  8. Edirisinghe, M., Ali, A., Maqbool, M., & Alderson, P. G. (2014). Chitosan controls postharvest anthracnose in bell pepper by activating defense-related enzymes. Journal of Food Science and Technology, 51, 4078–4083.CrossRefGoogle Scholar
  9. Effantin, G., Rivasseau, C., Gromova, M., Bligny, R., & Hugouvieux-Cotte-Pattat, N. (2011). Massive production of butanediol during plant infection by phytopathogenic bacteria of the genera Dickeya and Pectobacterium. Molecular Microbiology, 82, 988–997.CrossRefGoogle Scholar
  10. Fortunato, A. A., Debona, D., Bernardeli, A. M. A., & Rodrigues, F. A. (2015). Defence-related enzymes in soybean resistance to target spot. Journal of Phytopathology, 163, 731–742.CrossRefGoogle Scholar
  11. García-Pérez, M., Egea, C., & Candela, M. (1998). Defence response of pepper (Capsicum annuum) suspension cells to Phytophthora capsici. Physiologia Plantarum, 103, 527–533.CrossRefGoogle Scholar
  12. Guetsky, R., Kobiler, I., Wang, X., Perlman, N., Gollop, N., Avila-Quezada, G., Hadar, I., & Prusky, D. (2005). Metabolism of the flavonoid epicatechin by laccase of Colletotrichum gloeosporioides and its effect on pathogenicity on avocado fruit. Biochemistry and Cell Biology, 95, 1341–1348.Google Scholar
  13. Ho, W. C., & Ko, W. H. (1997). A simple method for obtaining single-spore isolates of fungi. Botanical Bulletin of the Academia Sinica, 38, 41–44.Google Scholar
  14. Jesus, J. L., Tomé, L. I. N., Eusébio, M. E. S., & Redinha, J. S. (2006). Determination of the enthalpy of solute-solvent interaction from the enthalpy of solution: Aqueous solutions of erythritol and L-threitol. The Journal of Physical Chemistry. B, 110, 9280–9285.CrossRefGoogle Scholar
  15. Kim, K. D., Oh, B. J., & Yang, J. (1999). Differential interactions of a Colletotrichum gloeosporioides isolates with green and red pepper fruits. Phytoparasitica, 27, 97–106.CrossRefGoogle Scholar
  16. Kim, S., Park, J., Yeom, S. I., Kim, Y. M., Seo, E., Kim, K. T., et al. (2017). New reference genome sequences of hot pepper reveal the massive evolution of plant disease-resistance genes by retroduplication. Genome Biology, 18(1), 210.CrossRefGoogle Scholar
  17. Koskimäki, J. J., Hokkanen, J., Jaakola, L., Suorsa, M., Tolonen, A., & Mattila, S. (2009). Flavonoid biosynthesis and degradation play a role in early defense responses of blueberry (Vaccinium myrtillus) against biotic stress. European Journal of Plant Pathology, 125, 629–640.CrossRefGoogle Scholar
  18. Lisec, J., Schauer, N., Kopka, J., Willmitzer, L., & Fernie, A. R. (2006). Gas chromatography mass spectrometry-based metabolite profiling in plants. Nature Protocols, 1, 387–396.CrossRefGoogle Scholar
  19. Liu, P., Dai, T., Chang, X., Hu, Z., Liang, L., Sun, M., & Liu, X. L. (2019). Untargeted metabolomics based on GC-MS and chemometrics: A new tool for the early diagnosis of strawberry anthracnose caused by Colletotrichum theobromicola. Plant Disease, PDIS-01-19-0219.
  20. Mahasuk, P., Taylor, P. W. J., & Mongkolporn, O. (2009). Identification of two new genes conferring resistance to Colletotrichum acutatum in Capsicum baccatum. Phytopathology, 99, 1100–1104.CrossRefGoogle Scholar
  21. Mikulic-Petkovsek, M., Schmitzer, V., Jakopic, J., Cunja, V., Veberic, R., Munda, A., & Stampar, F. (2013). Phenolic compounds as defence response of pepper fruit to Colletotrichum coccodes. Physiological and Molecular Plant Pathology, 84, 138–145.CrossRefGoogle Scholar
  22. Miles, T. D., Day, B., & Schilder, A. C. (2011). Identification of differentially expressed genes in a resistant versus a susceptible blueberry cultivar after infection by Colletotrichum acutatum. Molecular Plant Pathology, 12(5), 463–477.CrossRefGoogle Scholar
  23. Miles, T. D., Hancock, J., Callow, P., & Schilder, A. C. (2012). Evaluation of screening methods and fruit composition in relation to anthracnose fruit rot resistance in blueberries. Plant Pathology, 61, 555–566.CrossRefGoogle Scholar
  24. Mishra, R., Nanda, S., Rout, E., Chand, S. K., Mohanty, J. N., & Joshi, R. K. (2017). Differential expression of defense-related genes in chilli pepper infected with anthracnose pathogen Colletotrichum truncatum. Physiological and Molecular Plant Pathology, 97, 1–10.CrossRefGoogle Scholar
  25. Mishra, R., Rout, E., Mohanty, J. N., & Joshi, R. K. (2019). Sequence-tagged site-based diagnostic markers linked to a novel anthracnose resistance gene RCt1 in chili pepper (Capsicum annuum L.). Botanical Bulletin of the Academia Sinica, 9, 9. Scholar
  26. Nadella, K. D., Marla, S. S., & Kumar, P. A. (2012). Metabolomics in agriculture. J. Int. Biol., 16(4), 149–159.Google Scholar
  27. Park, S., Kim, S. H., Park, H. G., & Yoon, J. B. (2009). Capsicum germplasm resistance to pepper anthracnose differentially interacts with Colletotrichum isolates. Horticulture, Environment and Biotechnology, 50, 17–23.Google Scholar
  28. Park, S., Jeong, W. Y., Lee, J. H., Kim, Y. H., Jeong, S. W., Kim, G. S., Bae, D. W., Lim, C. S., Jin, L. S., Lee, S. J., & Shin, S. C. (2012). Determination of polyphenol levels variation in Capsicum annuum L. cv. Chelsea (yellow bell pepper) infected by anthracnose (Colletotrichum gloeosporioides) using liquid chromatography–tandem mass spectrometry. Food Chemistry, 130, 981–985.CrossRefGoogle Scholar
  29. Park, S., Park, A. R., Im, S., Han, Y. J., Lee, S., et al. (2014). Developmentally regulated sesquiterpene production confers resistance to Colletotrichum gloeosporioides in ripe pepper fruits. PLoS One, 9(10), e109453.CrossRefGoogle Scholar
  30. Pereira, M. J. Z., Massola, N. S., Sussel, A. A. B., Sala, F. C., Costa, C. P., & Boiteux, L. S. (2011). Reaction of Capsicum accessions and progenies from interspecific crosses to Colletotrichum acutatum isolates. Horticultura Brasileira, 29, 569–576.CrossRefGoogle Scholar
  31. Ranathunge, N. P., Mongkolporn, O., Ford, R., & Taylor, P. W. J. (2012). Colletotrichum truncatum pathosystem on Capsicum spp.: Infection, colonization and defence mechanisms. Australasian Plant Pathology, 41, 463–473.CrossRefGoogle Scholar
  32. Rao, S., & Nandineni, M. R. (2017). Genome sequencing and comparative genomics reveal a repertoire of putative pathogenicity genes in chilli anthracnose fungus Colletotrichum truncatum. PLoS One, 12(8), e0183567.CrossRefGoogle Scholar
  33. Ruiz-Lau, N., Medina-Lara, F., Minero-Garcia, Y., Zamudio-Moreno, E., Guzman-Antonio, A., & Echevarria-Machado, I. (2011). Water deficit affects the accumulation of capsaicinoids in fruit of Capsicum chinense Jacq. Hortscience, 46, 487–492.CrossRefGoogle Scholar
  34. Saxena, A., Raghuwanshi, R., Gupta, V. K., & Singh, H. B. (2016). Chilli anthracnose: The epidemiology and management. Frontiers in Microbiology, 4, 1–18.Google Scholar
  35. Silva, S. A. M., Rodrigues, R., Gonçalves, L. S. A., Sudré, C. P., Bento, C. S., Carmo, M. G. F., & Medeiros, A. M. (2014). Resistance in Capsicum spp. to anthracnose affected by different stages of fruit development during pre- and post-harvest. Tropical Plant Pathology, 39, 335–341.CrossRefGoogle Scholar
  36. Silveira, P. R., Nascimento, K. J. T., Andrade, C. C. L., Bispo, W. M. S., Oliveira, J. R., & Rodrigues, F. A. (2015). Physiological changes in tomato leaves arising from Xanthomonas gardneri infection. Physiological and Molecular Plant Pathology, 92, 130–138.CrossRefGoogle Scholar
  37. Suwor, P., Thummabenjapone, P., Sanitchon, J., Kumar, S., Techawongstien, S. (2016). Role of two inoculation methods in the expression of anthracnose resistance gene in chili (Capsicum annuum L.). In III International Symposium on Postharvest Pathology: Using Science to Increase Food Availability, A. Ippolito et al., Eds, (pp. 207-214) SHS Acta Horticulturae 1144.Google Scholar
  38. Tattersall, D. B., Heeswijck, R. V., & Hoj, P. B. (1997). Identification and characterization of a fruit-specific, thaumatin-like protein that accumulates at very high levels in conjunction with the onset of sugar accumulation and berry softening in grapes. Plant Physiology, 114, 759–769.CrossRefGoogle Scholar
  39. Yang, S., Gao, M., Xu, C., Gao, J., Deshpande, S., Lin, S., Roe, B. A., & Zhu, H. (2008). Alfalfa benefits from Medicago truncatula: The RCT1 gene from M. truncatula confers broad-spectrum resistance to anthracnose in alfalfa. PNAS, 105(34), 12164–12169.CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  • Henrique Kuhn Massot Padilha
    • 1
  • Nathalia de Avila Madruga
    • 1
  • Bianca Camargo Aranha
    • 1
  • Jessica Fernanda Hoffmann
    • 1
  • Rosane Lopes Crizel
    • 1
  • Rosa Lia Barbieri
    • 2
  • Fabio Clasen Chaves
    • 1
    Email author
  1. 1.Faculdade de Agronomia “Eliseu Maciel”Federal University of PelotasPelotasBrazil
  2. 2.Embrapa Temperate AgriculturePelotasBrazil

Personalised recommendations