Advertisement

Spinosad resistance selected in the laboratory strain of Phenacoccus solenopsis Tinsley (Hemiptera: Pseudococcidae): studies on risk assessment and cross-resistance patterns

  • Ansa BanazeerEmail author
  • Muhammad Babar Shahzad AfzalEmail author
  • Mamuna Ijaz
  • Sarfraz Ali ShadEmail author
Article
  • 17 Downloads

Abstract

Cotton is a major cash crop of Pakistan and susceptible to a variety of insect attacks including the cotton mealybug, Phenacoccus solenopsis Tinsley (Hemiptera: Pseudococcidae). In this study we determined the rate of risk of resistance development in P. solenopsis against spinosad by selection experiments and also evaluated the cross-resistance of spinosad selected population with spinetoram, profenofos, and deltamethrin. The spinosad selected population developed 539.49 and 15,233.84-fold resistance after 22 generations of selection compared with field and laboratory susceptible populations, respectively. Cross-resistance induced due to selection with spinosad was very low, medium and very high to profenofos, spinetoram, and deltamethrin, respectively in P. solenopsis. Realized heritability (h2) of spinosad resistance was 0.06. At constant slope = 1.10, ten-fold increase in resistance to spinosad would require 8.27, 3.1, and 1.91 generations for their corresponding h2 = 0.06, 0.16 and 0.26 at 95% selection intensity. At constant h2 = 0.06, the number of generations needed for ten-fold increase in spinosad resistance would be 8.27, 15.78, and 23.30 for their corresponding slope values 1.10, 2.10 and 3.10, respectively if selection intensity is 95%. The development of spinosad resistance in P. solenopsis can be reduced by adopting IPM strategies such as insecticide rotation schemes, i.e. discontinue the use of the same insecticide for as long as possible, use of refuges and adoption of suitable cultural and biological control practices.

Keywords

Spinosad Bio-pesticide Cotton mealybug Cross-resistance Resistance prediction Management 

Notes

Acknowledgements

The authors are grateful to Dr. Whitworth Robert J. (Jeff), Associate Professor, Department of Entomology, Kansas State University, USA to improve the final version of draft for English language and sense.

Author contributions

MBSA and SAS conceived and designed the study. MBSA collected the population from field. MBSA and MI reared the insect and performed laboratory work. AB and MBSA analyzed the data and wrote the manuscript. SAS read and improved the quality of earlier version of draft.

Compliance with ethical standards

Disclosure statement

No potential conflict of interest was reported by the authors.

References

  1. Abbas, N., & Shad, S. A. (2015). Assessment of resistance risk to lambda-cyhalothrin and cross-resistance to four other insecticides in the house fly, Musca domestica L. (Diptera: Muscidae). Parasitology Research, 114, 2629–2637.CrossRefGoogle Scholar
  2. Abbas, G., Arif, M. J., Ashfaq, M., Aslam, M., & Saeed, S. (2010). Host plants, distribution and overwintering of cotton mealybug (Phenacoccus solenopsis; Hemiptera: Pseudococcidae). International Journal of Agriculture and Biology, 12, 421–425.Google Scholar
  3. Abbott, W. S. (1925). A method of computing the effectiveness of an insecticide. Journal of Economic Entomology, 18, 265–267.CrossRefGoogle Scholar
  4. Afzal, M. B. S., & Shad, S. A. (2016). Genetic analysis, realized heritability and synergistic suppression of indoxacarb resistance in Phenacoccus solenopsis Tinsley (Homoptera: Pseudococcidae). Crop Protection, 84, 62–68.CrossRefGoogle Scholar
  5. Afzal, M. B. S., & Shad, S. A. (2017). Spinosad resistance in an invasive cotton mealybug, Phenacoccus solenopsis: Cross-resistance, stability and relative fitness. Journal of Asia-Pacific Entomology, 20, 457–462.CrossRefGoogle Scholar
  6. Afzal, M. B. S., Shad, S. A., Abbas, N., Ayyaz, M., & Walker, W. B. (2015). Cross-resistance, the stability of acetamiprid resistance and its effect on the biological parameters of cotton mealybug, Phenacoccus solenopsis (Homoptera: Pseudococcidae), in Pakistan. Pest Management Science, 71, 151–158.CrossRefGoogle Scholar
  7. Afzal, M. B. S., Shad, S. A., Ejaz, M., & Ijaz, M. (2018). Selection, cross-resistance, and resistance risk assessment to deltamethrin in laboratory selected Phenacoccus solenopsis (Homoptera: Pseudococcidae). Crop Protection, 112, 67–73.CrossRefGoogle Scholar
  8. Ahmad, M., Arif, M. I., & Ahmad, M. (2007). Occurrence of insecticide resistance in field populations of Spodoptera litura (Lepidoptera: Noctuidae) in Pakistan. Crop Protection, 26, 809–817.CrossRefGoogle Scholar
  9. Ahmad, S., Noor-ul-Islam, Mahmood, A., Ashraf, F., Hayat, K., & Hanif, M. (2010). Screening of cotton germplasm against cotton leaf curl virus. Pakistan Journal of Botany, 42, 3327–3342.Google Scholar
  10. Anonymous (2018a). http://greengroup.com.pk/cotton-pests. Accessed 18 Nov 2018.
  11. Arif, M. I., Rafiq, M., & Ghaffar, A. (2009). Host plants of cotton mealybug (Phenacoccus solenopsis): A new menace to cotton agroecosystem of Punjab. International Journal of Agriculture and Biology, 11, 163–167.Google Scholar
  12. Aslam, M., Razaq, M., Saeed, N. A., & Ahmad, F. (2004). Comparative resistance of different cotton varieties against bollworm complex. International Journal of Agriculture and Biology, 6, 39–41.Google Scholar
  13. Basit, M., Sayyed, A. H., Saleem, M. A., & Saeed, S. (2011). Cross-resistance, inheritance and stability of resistance to acetamiprid in cotton whitefly, Bemisia tabaci Genn (Hemiptera: aleyrodidae). Crop Protection, 30, 705–712.CrossRefGoogle Scholar
  14. Bielza, P., Quinto, V., Fernandez, E., Grávalos, C., & Contreras, J. (2007). Genetics of spinosad resistance in Frankliniella occidentalis (Thysanoptera: Thripidae). Journal of Economic Entomology, 100, 916–920.CrossRefGoogle Scholar
  15. Brown, T. M., & Payne, G. T. (1988). Experimental selection for insecticide resistance. Journal of Economic Entomology, 81, 49–56.CrossRefGoogle Scholar
  16. Culik, M. P., & Gullan, P. J. (2005). A new pest of tomato and other records of mealybugs (Hemiptera: Pseudococcidae) from Espirito Santo, Brazil. Zootaxa, 964, 1–8.CrossRefGoogle Scholar
  17. David, P. M. M., Rajkumar, K., Razak, T. A., Nelson, S. J., Nainar, P., Baskaran, R. K. M., & Rajavel, D. S. (2010). Efficacy of castor oil-based soft soaps against cotton mealy bug, Phenacoccus solenopsis Tinsley on brinjal. Karnataka Journal of Agricultural Sciences, 23, 169–170.Google Scholar
  18. Dhawan, A. K., & Saini, S. (2009). First record of Phenacoccus solenopsis Tinsley (Homoptera: Pseudococcidae) on cotton in Punjab. Journal of Insect Science, 22, 309–310.Google Scholar
  19. El-Zahi, E. Z. S., Aref, S. A. E. S., & Korish, S. K. M. (2016). The cotton mealybug, Phenacoccus solenopsis Tinsley (Hemiptera: Pseudococcidae) as a new menace to cotton in Egypt and its chemical control. Journal of Plant Protection and Research, 56, 111–115.CrossRefGoogle Scholar
  20. Falconer, D. S., Mackay, T. F. C., & Frankham, R. (1996). Introduction to quantitative genetics (4th edn). Trends in Genetics, 12, 280.CrossRefGoogle Scholar
  21. Fand, B. B., & Suroshe, S. S. (2015). The invasive mealybug Phenacoccus solenopsis Tinsley, a threat to tropical and subtropical agricultural and horticultural production systems–a review. Crop Protection, 69, 34–43.CrossRefGoogle Scholar
  22. Fand, B. B., Tonnang, H. E. Z., Kumar, M., Bal, S. K., Singh, N. P., Rao, D. V. K. N., Kamble, A. L., Nangare, D. D., & Minhas, S. P. (2014). Predicting the impact of climate change on regional and seasonal abundance of the mealybug Phenacoccus solenopsis Tinsley (Hemiptera: Pseudococcidae) using temperature-driven phenology model linked to GIS. Ecological Modelling, 288, 62–78.CrossRefGoogle Scholar
  23. Ferguson, J. S. (2004). Development and stability of insecticide resistance in the leafminer Liriomyza trifolii (Diptera: Agromyzidae) to cyromazine, abamectin, and spinosad. Journal of Economic Entomology, 97, 112–119.CrossRefGoogle Scholar
  24. Finney, D. J. (1971). Probit analysis (3rd ed.p. 333). UK: Cambridge University Press.Google Scholar
  25. Firkoi, M. J., & Hayes, J. L. (1990). Quantitative genetic tools for insecticide resistance risk assessment: Estimating the heritability of resistance. Journal of Economic Entomology, 83, 647–654.CrossRefGoogle Scholar
  26. GOP. (2016). Pakistan economic survey, 2015–2016. Islamabad, Pakistan: Ministry Finance Division.Google Scholar
  27. Hakim, A. S., Lanjar, A. G., Ashfaque, A. N., Khajjak, A. S., Shafique, A. M., & Bhugro, M. (2011). Seasonal occurrence of Phenacoccus solenopsis Tinsley (Hemiptera: Pseudococcidae) and its natural enemies on different varieties of cotton crop. Pakistan Journal of Entomology, 26, 17–24.Google Scholar
  28. Hodgson, C., Abbas, G., Arif, M. J., Saeed, S., & Karar, H. (2008). Phenacoccus solenopsis Tinsley (Sternorrhyncha: Coccoidea: Pseudococcidae), an invasive mealybug damaging cotton in Pakistan and India, with a discussion on seasonal morphological variation. Zootaxa, 1913, 1–35.CrossRefGoogle Scholar
  29. Ijaz, M., Afzal, M. B. S., & Shad, S. A. (2016). Resistance risk analysis to acetamiprid and other insecticides in acetamiprid-selected population of Phenacoccus solenopsis. Phytoparasitica, 44, 177–186.CrossRefGoogle Scholar
  30. Ismail, M., Ejaz, M., Abbas, N., Shad, S. A., & Afzal, M. B. S. (2017). Resistance risk assessment to chlorpyrifos and cross-resistance to other insecticides in afield strain of Phenacoccus solenopsis Tinsley. Crop Protection, 94, 38–43.CrossRefGoogle Scholar
  31. Jutsum, A. R., Heaney, S. P., Perrin, B. M., & Wege, P. J. (1998). Pesticide resistance: Assessment of risk and the development and implementation of effective management strategies. Pesticide Science, 54, 435–446.CrossRefGoogle Scholar
  32. Karunamoorthi, K., Mohammed, M., & Wassie, F. (2012). Knowledge and practices of farmers with reference to pesticide management: Implications on human health. Archives of Environmental & Occupational Health, 67, 109–116.CrossRefGoogle Scholar
  33. Kaydan, M. B., Çalışkan, A. F., & Ulusoy, M. R. (2013). New record of invasive mealybug Phenacoccus solenopsis Tinsley (Hemiptera: Pseudococcidae) in Turkey. EPPO Bulletin, 43, 169–171.CrossRefGoogle Scholar
  34. Khan, H. A. A., Akram, W., & Shad, S. A. (2014b). Genetics, cross-resistance and mechanism of resistance to spinosad in a field strain of Musca domestica L. (Diptera: Muscidae). Acta Tropica, 130, 148–154.CrossRefGoogle Scholar
  35. Kumashiro, B. R., Heu, R. A., Nishida, G. M., & Beardsley, J. W. (2001). New state records of immigrant insects in the Hawaiian islands for the year 1999. Proceedings of the Hawaiian Entomological Society, 35, 170–184.Google Scholar
  36. Kwon, D. H., Choi, B. R., Park, H. M., Lee, S. H., Miyata, T., Clark, J. M., & Lee, S. H. (2004). Knockdown resistance allele frequency in field populations of Plutella xylostella in Korea. Pesticide Biochemistry and Physiology, 80, 21–30.CrossRefGoogle Scholar
  37. Lai, T., & Su, J. (2011). Assessment of resistance risk in Spodoptera exigua (Hübner) (Lepidoptera: Noctuidae) to chlorantraniliprole. Pest Management Science, 67, 1468–1472.CrossRefGoogle Scholar
  38. Levot, G. W., Rothwell, J. T., & Sales, N. (2002). Baseline laboratory bioassay data for spinosad against populations of Australian sheep blowfly, Lucilia cuprina (Weidman) (Diptera: Calliphoridae). Australian Journal of Entomology, 41, 79–81.CrossRefGoogle Scholar
  39. Mansoor, M. M., Afzal, M. B. S., Basoalto, E., Raza, A. B. M., & Banazeer, A. (2016). Selection of bifenthrin resistance in cotton mealybug Phenacoccus solenopsis Tinsley (Homoptera: Pseudococcidae): Cross-resistance, realized heritability and possible resistance mechanism. Crop Protection, 87, 55–59.CrossRefGoogle Scholar
  40. Nagrare, V. S., Kranthi, S., Biradar, V. K., Zade, N. N., Sangode, V., Kakde, G., et al. (2009). Widespread infestation of the exotic mealybug species, Phenacoccus Solenopsis (Tinsley) (Hemiptera: Pseudococcidae), on cotton in India. Bulletin of Entomological Research, 99, 541–573.CrossRefGoogle Scholar
  41. Nagrare, V. S., Kranthi, S., Kumar, R., Jothi, B. D., Amutha, M., Deshmukh, A. J., Bisane, K. D., & Kranthi, K. R. (2011). Compendium of cotton mealybugs (p. 42). Nagpur: Central Institute for Cotton Research.Google Scholar
  42. Nauen, R., Slater, R., Sparks, T. C., Elbert, A., & Mccaffery, A. (2019). IRAC: Insecticide resistance and mode-of-action classification of insecticides. Modern Crop Protection Compounds, 3, 995–1012.CrossRefGoogle Scholar
  43. Özkara, A., Akyıl, D. & Konuk, M. (2016). Pesticides, Environmental Pollution, and Health, Environmental Health Risk Marcelo L. Larramendy, Intech Open,  https://doi.org/10.5772/63094. Available from: https://www.intechopen.com/books/environmental-health-risk-hazardous-factors-to-living-species/pesticides-environmental-pollution-and-health. Accessed 18 Nov 2018.
  44. Ozyigit, I. I., Kahraman, M. V., & Ercan, O. (2007). Relation between explant age, total phenols and regeneration response in tissue cultured cotton (Gossypium hirsutum L.). African Journal of Biotechnology, 6, 003–008.Google Scholar
  45. Perry, T., McKenzie, J. A., & Batterham, P. (2007). A 6Dα knockout strain of Drosophila melanogaster confers a high level of resistance to spinosad. Insect Biochemistry and Molecular Biology, 37, 184–188.CrossRefGoogle Scholar
  46. Rehan, A., & Freed, S. (2014). Selection, mechanism, cross resistance and stability of spinosad resistance in Spodoptera litura (Fabricius) (Lepidoptera: Noctuidae). Crop Protection, 56, 10–15.CrossRefGoogle Scholar
  47. Rehman, A., Jingdong, L., Chandio, A. A., Hussain, I., Wagan, S. A., & Memon, Q. U. A. (2016). Economic perspectives of cotton crop in Pakistan: A time series analysis (1970–2015) (part 1). Journal of the Saudi Society of Agricultural Sciences, 18, 49–54.CrossRefGoogle Scholar
  48. Saddiq, B., Shad, S. A., Khan, H. A. A., Aslam, M., Ejaz, M., & Afzal, M. B. S. (2014). Resistance in the mealybug Phenacoccus solenopsis Tinsley (Homoptera: Pseudococcidae) in Pakistan to selected organophosphate and pyrethroid insecticides. Crop Protection, 66, 29–33.CrossRefGoogle Scholar
  49. Saddiq, B., Shad, S. A., Aslam, M., Ijaz, M., & Abbas, N. (2015). Monitoring resistance of Phenacoccus solenopsis Tinsley (Homoptera: Pseudococcidae) to new chemical insecticides in Punjab, Pakistan. Crop Protection, 74, 24–29.CrossRefGoogle Scholar
  50. Saeed, S., Ahmad, M., Ahmad, M., & Kown, Y. J. (2007). Insecticidal control of the mealybug Phenacoccus gossypiphilous (Hemiptera: Pseudococcidae), a new pest of cotton in Pakistan. Entomological Research, 37, 76–80.CrossRefGoogle Scholar
  51. Sayyed, A. H., Saeed, S., Noor-Ul-Ane, M., & Crickmore, N. (2008). Genetic, biochemical, and physiological characterization of spinosad resistance in Plutella xylostella (Lepidoptera: Plutellidae). Journal of Economic Entomology, 101, 1658–1666.CrossRefGoogle Scholar
  52. Shi, J., Zhang, L., & Gao, X. (2011). Characterization of spinosad resistance in the housefly Musca domestica (Diptera: Muscidae). Pest Management Science, 67, 335–340.CrossRefGoogle Scholar
  53. Shono, T., & Scott, J. G. (2003). Spinosad resistance in the housefly, Musca domestica, is due to a recessive factor on autosome 1. Pesticide Biochemistry and Physiology, 75, 1–7.CrossRefGoogle Scholar
  54. Siqueira, H. A., Guedes, R. N., Fragoso, D. B., & Magalhaes, L. C. (2001). Abamectin resistance and synergism in Brazilian populations of Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae). International Journal of Pest Management, 47, 247–251.CrossRefGoogle Scholar
  55. Tabashnik, B. E. (1992). Resistance risk assessment: Realized heritability of resistance to Bacillus thuringiensis in diamondback moth (Lepidoptera: Plutellidae), tobacco budworm (Lepidoptera: Noctuidae), and Colorado potato beetle (Coleoptera: Chrysomelidae). Journal of Economic Entomology, 85, 1551–1559.CrossRefGoogle Scholar
  56. Tabashnik, B. E., & Mcgaughey, W. H. (1994). Resistance risk assessment for single and multiple insecticides: Responses of Indian meal moth (Lepidoptera: Pyralidae) to Bacillus thuringiensis. Journal of Economic Entomology, 87, 834–841.CrossRefGoogle Scholar
  57. Tabashnik, B. E., Cushing, N. L., & Johnson, M. W. (1987). Diamondback moth (Lepidoptera: Plutellidae) resistance to insecticides in Hawaii: Intra-island variation and cross-resistance. Journal of Economic Entomology, 80, 1091–1099.CrossRefGoogle Scholar
  58. Tanwar, R. K., Jeyakumar, P., Singh, A., Jafri, A. A., & Bambawale, O. M. (2011). Survey for cotton mealybug, Phenacoccus solenopsis (Tinsley) and its natural enemies. Journal of Environmental Biology, 32, 381.Google Scholar
  59. Thompson, G. D., Dutton, R., & Sparks, T. C. (2000). Spinosad- a case study: An example from a natural products discovery programme. Pest Management Science, 56, 696–702.CrossRefGoogle Scholar
  60. Wang, W., Mo, J., Cheng, J. A., Zhuang, P., & Tang, Z. (2006). Selection and characterization of spinosad resistance in Spodoptera exigua (Hübner) (Lepidoptera: Noctuidae). Pesticide Biochemistry and Physiology, 84, 180–187.CrossRefGoogle Scholar
  61. Wang, Y. P., Wu, S. A., & Zhang, R. Z. (2009). Pest risk analysis of a new invasive pest, Phenacoccus solenopsis, to China. Chinese Bulletin of Entomology, 46, 101–106.Google Scholar
  62. Wyss, C. F., Young, H. P., Shukla, J., & Roe, R. M. (2003). Biology and genetics of a laboratory strain of the tobacco budworm, Heliothis virescens (Lepidoptera: Noctuidae), highly resistant to spinosad. Crop Protection, 22, 307–314.CrossRefGoogle Scholar
  63. Young, H. P., Bailey, W. D., & Roe, R. M. (2003). Spinosad selection of a laboratory strain of the tobacco budworm, Heliothis virescens (Lepidoptera: Noctuidae), and characterization of resistance. Crop Protection, 22, 265–273.CrossRefGoogle Scholar
  64. Zhao, J. Z., Li, Y. X., Collins, H. L., Gusukuma-Minuto, L., Mau, R. F., Thompson, G. D., & Shelton, A. M. (2002). Monitoring and characterization of diamondback moth (Lepidoptera: Plutellidae) resistance to spinosad. Journal of Economic Entomology, 95, 430–436.CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Department of Entomology, Faculty of Agricultural Sciences and TechnologyBahauddin Zakariya UniversityMultanPakistan
  2. 2.Citrus Research InstituteSargodhaPakistan

Personalised recommendations