Status of insecticide resistance in Bemisia tabaci: resistance, cross-resistance, stability of resistance, genetics and fitness costs

  • Muhammad BasitEmail author


The whitefly, Bemisia tabaci Gennadius (Hemiptera: Aleyrodidae) is a worldwide pest of major crops. It is a highly adaptable insect pest and resists almost all chemical compounds used for its control. It resists at a 7–30 fold, 7–4931-, 20–80-, and 12–2461 fold to various compounds of cyclodiene, organophosphates, carbamates and pyrethroid, respectively. It also resists up to 2000 fold to neonicotinoids and buprofezin. However, B. tabaci resists to some level to pyradabin, spiromesifen, pymetrozine, fipronil, diafenthuron and spinosaid. Resistance in B. tabaci is quite unstable in the absence of selection pressure, and cross-resistance within and between chemical groups is an established phenomenon. Further, inheritance of insecticide resistance in B. tabaci exclusively appears autosomal and partially recessive but resistance to pyriproxyfen and bifenthrin in Q-and B-type varies from incomplete to complete dominance. Furthermore, resistance to imidacloprid, bifenthrin, fenvelerate and pyriproxyfen is controlled by more than one gene (factor). However, resistance to pyriproxyfen in Q-type appears to be under the control of one factor. Mechanism of insecticide resistance and cost of fitness in this insect has also been discussed.


Whitefly Resistance Cross-resistance Stability of resistance Genetics of resistance and fitness cost 



I pay special thanks to Dr. Juan Luis Jurat-Fuentes, Departent of Entomology and Plant Pathology, University of Tennessee for his valuable and critical comments on the first version of this manuscript.

Compliance with ethical standards

Conflict of interest

The author declares that he has no conflict of interest.


  1. Abdeldaffie, E. Y. A., Elhag, E. A., & Bashir, N. H. H. (1987). Resistance in the cotton whitefly, Bemisia tabaci (Genn.), to insecticide recently introduced into Sudan Gezira. International Journal of Pest Management, 33, 283–286.Google Scholar
  2. Abou-Yousef, H. M., Farghaly, S. F., Singab, M., & Ghoneim, Y. F. (2010). Resistance to lambda-cyhalothrin in laboratory strain of whitefly, Bemisia tabaci (Genn.) and cross resistance to several insecticides. American-Eurasian Journal of Agriculture & Environmental Sciences, 7, 693–696.Google Scholar
  3. Ahmad, M., Arif, M. I., Ahmad, Z., & Denholm, I. (2002). Cotton whitefly (Bemisia tabaci) resistance to organophosphate and pyrethroid insecticides in Pakistan. Pest Management Science, 58, 203–208.CrossRefPubMedGoogle Scholar
  4. Ahmad, M., Arif, M. I., & Naveed, M. (2010). Dynamics of resistance to organophosphate and carbamate insecticides in the cotton whitefly, Bemisia tabaci (Hemiptera: Aleyrodidae) from Pakistan. Journal of Pest Science, 83, 409–420.CrossRefGoogle Scholar
  5. Ahmed, A. H. M., Elhag, E. A., & Bashir, N. H. H. (1987). Insecticide resistance in the cotton whitefly (Bemisia tabaci Genn.) in the Sudan Gezira. International Journal of Pest Management, 33, 67–72.Google Scholar
  6. Alon, M., Benting, J., Lueke, B., Ponge, T., Alon, F., & Morin, S. (2006). Multiple origins of pyrethroid resistance in sympatric biotypes of Bemisia tabaci (Hemiptera: Aleyrodidae). Insect Biochemistry and Molecular Biology, 36, 71–79.CrossRefPubMedGoogle Scholar
  7. Alon, M., Alon, F., Nauen, R., & Morin, S. (2008). Organophosphates’ resistance in the B-biotype of Bemisia tabaci (Hemiptera: Aleyrodidae) is associated with a point mutation in an ace1-type acetylcholinesterase and overexpression of carboxylesterase. Insect Biochemistry and Molecular Biology, 38, 940–949.CrossRefPubMedGoogle Scholar
  8. Anthony, N. M., Brown, J. K., Markham, P. G., & Ffrenchconstant, R. H. (1995). Molecular analysis of cyclodiene resistance-associated mutations among populations of the sweetpotato whitefly Bemisia tabaci. Pesticide Biochemistry and Physiology, 51, 220–228.CrossRefGoogle Scholar
  9. Basit, M., Sayyed, A. H., Saleem, M. A., & Saeed, S. (2011). Cross-resistance, inheritance and stability of resistance to acetamiprid in cotton whitefly, Bemisia tabaci Genn (Hemiptera: Aleyrodidae). Crop Protection, 30, 705–712.CrossRefGoogle Scholar
  10. Basit, M., Saleem, M. A., Saeed, S., & Sayyed, A. H. (2012a). Cross resistance, genetic analysis and stability of resistance to buprofezin in cotton whitefly, Bemisia tabaci (Homoptera: Aleyrodidae). Crop Protection, 40, 16–21.CrossRefGoogle Scholar
  11. Basit, M., Sayyed, A. H., Saeed, S., & Saleem, M. A. (2012b). Lack of fitness costs associated with acetamiprid resistance in Bemisia tabaci (Hemiptera: Aleyrodidae). Journal of Economic Entomology, 105, 1401–1406.CrossRefPubMedGoogle Scholar
  12. Basit, M., Saeed, S., Saleem, M. A., Denholm, I., & Shah, M. (2013). Detection of resistance, cross-resistance, and stability of resistance to new chemistry insecticides in Bemisia tabaci (Homoptera: Aleyrodidae). Journal of Economic Entomology, 106, 1414–1422.CrossRefPubMedGoogle Scholar
  13. Bates, S. L., Zhao, J.-Z., Roush, R. T., & Shelton, A. M. (2005). Insect resistance management in GM crops: past, present and future. Nature Biotechnology, 23, 57–62.CrossRefPubMedGoogle Scholar
  14. Benrey, B., & Denno, R. F. (1997). The slow-growth-high-mortality hypothesis: a test using the cabbage butterfly. Ecology, 78, 987–999.Google Scholar
  15. Bielza, P., Quinto, V., Gravalos, C., Abellan, J., & Fernandez, E. (2008). Lack of fitness costs of insecticide resistance in the western flower thrips (Thysanoptera: Thripidae). Journal of Economic Entomology, 101, 499–503.CrossRefPubMedGoogle Scholar
  16. Boivin, T., Bouvier, J.-C., Beslay, D., & Sauphanor, B. (2003). Phenological segregation of insecticide resistance alleles in the codling moth Cydia pomonella (Lepidoptera: Tortricidae): a case study of ecological divergences associated with adaptive changes in populations. Genetical Research, 81, 169–177.CrossRefPubMedGoogle Scholar
  17. Bouharroud, R., & Hanafi, A. (2005). Resistance and cross-resistance of Bemisia Tabaci to three commonly used insecticides in the tomato greenhouses of the Souss Valley of Morocco. Editorial Advisory Board e, 14, 587–594.Google Scholar
  18. Bourguet, D. (1999). The evolution of dominance. Heredity, 83, 1–4.CrossRefPubMedGoogle Scholar
  19. Bourguet, D., Prout, M., & Raymond, M. (1996). Dominance of insecticide resistance presents a plastic response. Genetics, 143, 407–416.PubMedCentralPubMedGoogle Scholar
  20. Brent, K. (1986). Detection and monitoring of resistant forms: an overview. Pesticide resistance: strategies and tactics for management (pp. 298–312).Google Scholar
  21. Briddon, R.W. (2003) Cotton leaf curl disease, a multicomponent begomovirus complex. Molecular Plant Pathology, 4, 427–434.Google Scholar
  22. Brown, J. K. (1994). Current status of Bemisia tabaci as a plant pest and virus vector in agroecosystems worldwide. FAO Plant Protection Bulletin, 42, 3–32.Google Scholar
  23. Byrne, F. J., & Devonshire, A. L. (1993). Insensitive acetylcholinesterase and esterase polymorphism in susceptible and resistant populations of the tobacco whitefly, Bemisia tabaci (Genn.). Pesticide Biochemistry and Physiology, 45, 34–42.CrossRefGoogle Scholar
  24. Byrne, F. J., Cahill, M., Denholm, I., & Devonshire, A. L. (1994). A biochemical and toxicological study of the role of insensitive acetylcholinesterase in organophosphorus resistant Bemisia tabaci (Homoptera: Aleyrodidae) from Israel. Bulletin of Entomological Research, 84, 179–184.CrossRefGoogle Scholar
  25. Byrne, F. J., Gorman, K. J., Cahill, M., Denholm, I., & Devonshire, A. L. (2000). The role of B-type esterases in conferring insecticide resistance in the tobacco whitefly, Bemisia tabaci (Genn). Pest Management Science, 56, 867–874.CrossRefGoogle Scholar
  26. Byrne, F. J., Castle, S., Prabhaker, N., & Toscano, N. C. (2003). Biochemical study of resistance to imidacloprid in B biotype Bemisia tabaci from Guatemala. Pest Management Science, 59, 347–352.CrossRefPubMedGoogle Scholar
  27. Cahill, M., Byrne, F. J., Gorman, K., Denholm, I., & Devonshire, A. L. (1995). Pyrethroid and organophosphate resistance in the tobacco whitefly, Bemisia tabaci (Homoptera: Aleyrodidae). Bulletin of Entomological Research, 85, 181–187.CrossRefGoogle Scholar
  28. Cahill, M., Jarvis, W., Gorman, K., & Denholm, I. (1996). Resolution of baseline responses and documentation of resistance to buprofezin in Bemisia tabaci (Homoptera: Aleyrodidae). Bulletin of Entomological Research, 86, 117–122.CrossRefGoogle Scholar
  29. Carabalí, A., Belloti, A. C., & Montoya-Lerma, J. (2010). Biological parameters of Bemisia tabaci (Gennadius) biotype B (Hemiptera: Aleyrodidae) on Jatropha gossypiifolia, commercial (Manihot esculenta) and wild cassava (Manihot flabellifolia and M. Carthaginensis)(Euphorbiaceae). Neotropical Entomology, 39, 562–567.CrossRefPubMedGoogle Scholar
  30. Cardona, C., Rendón, F., Rodríguez, I. (1998). Chemical control and insecticide resistance of whiteflies in the Andean zone: a progress report. Procs. International Workshop on Bemisia and geminivirus (pp. 7–12).Google Scholar
  31. Cardona, C., Rendón, F., García, J., López-Ávila, A., Bueno, J., & Ramírez, J. (2001). Resistencia a insecticidas en Bemisia tabaci y Trialeurodes vaporariorum (Homoptera: Aleyrodidae) en Colombia y Ecuador. Revista Colombiana de Entomología, 27, 33–38.Google Scholar
  32. Carriére, Y., & Tabashnik, B. E. (2001). Reversing insect adaptation to transgenic insecticidal plants. Proceedings of the Royal Society of London B: Biological Sciences, 268, 1475–1480.CrossRefGoogle Scholar
  33. Carriere, Y., Deland, J. P., Roff, D. A., & Vincent, C. (1994). Life-history costs associated with the evolution of insecticide resistance. Proceedings of the Royal Society B: Biological Sciences, 258, 35–40.CrossRefGoogle Scholar
  34. Carrière, Y., Ellers-Kirk, C., Biggs, R., Higginson, D. M., Dennehy, T. J., & Tabashnik, B. E. (2004). Effects of gossypol on fitness costs associated with resistance to Bt cotton in pink bollworm. Journal of Economic Entomology, 97, 1710–1718.CrossRefPubMedGoogle Scholar
  35. Castle, S. J., Merten, P., & Prabhaker, N. (2014). Comparative susceptibility of Bemisia tabaci to imidacloprid in field and laboratory based bioassays. Pest Management Science, 70, 1538–1546.CrossRefPubMedGoogle Scholar
  36. Costa, H. S., Brown, J. K., & Byrne, D. N. (1991). Host plant selection by the whitefly, Bemisia tabaci (Gennadius),(Hom., Aleyrodidae) under greenhouse conditions. Journal of Applied Entomology, 112, 146–152.CrossRefGoogle Scholar
  37. Costa, H. S., Brown, J. K., Sivasupramaniam, S., & Bird, J. (1993). Regional distribution, insecticide resistance, and reciprocal crosses between the A and B biotypes of Bemisia tabaci. International Journal of Tropical Insect Science, 14, 255–266.CrossRefGoogle Scholar
  38. Cottage, E. L., & Gunning, R. V. (2006). Buprofezin inhibits acetylcholinesterase activity in B-biotype Bemisia tabaci. Journal of Molecular Neuroscience, 30, 39–40.CrossRefPubMedGoogle Scholar
  39. Crow, J. F. (1957). Genetics of insect resistance to chemicals. Annual Review of Entomology, 2, 227–246.CrossRefGoogle Scholar
  40. Crowder, D. W., Dennehy, T. J., Ellers-Kirk, C., Yafuso, C. M., Ellsworth, P. C., Tabashnik, B. E., & Carriere, Y. (2007). Field evaluation of resistance to pyriproxyfen in Bemisia tabaci (B biotype). Journal of Economic Entomology, 100, 1650–1656.CrossRefPubMedGoogle Scholar
  41. Crowder, D. W., Ellers-Kirk, C., Yafuso, C. M., Dennehy, T. J., Degain, B. A., Harpold, V. S., Tabashnik, B. E., & Carrière, Y. (2008). Inheritance of resistance to pyriproxyfen in Bemisia tabaci (Hemiptera: Aleyrodidae) males and females (B biotype). Journal of Economic Entomology, 101, 927–932.CrossRefPubMedGoogle Scholar
  42. Crowder, D. W., Ellers-Kirk, C., Tabashnik, B. E., & Carriere, Y. (2009a). Lack of fitness costs associated with pyriproxyfen resistance in the B biotype of Bemisia tabaci. Pest Management Science, 65, 235–240.CrossRefPubMedGoogle Scholar
  43. Crowder, D. W., Horowitz, A. R., Tabashnik, B. E., Dennehy, T. J., Denholm, I., Gorman, K., & Carrière, Y. (2009b). Analyzing haplodiploid inheritance of insecticide resistance in whitefly biotypes. Bulletin of Entomological Research, 99, 307.CrossRefPubMedGoogle Scholar
  44. Curtis, C. F., Cook, L. M., & Wood, R. J. (1978). Selection for and against insecticide resistance and possible methods of inhibiting the evolution of resistance in mosquitoes. Ecological Entomology, 3, 273–287.CrossRefGoogle Scholar
  45. Daly, H. V., Doyen, J. T., & Ehrlich, P. R. (1978). Introduction to insect biology and diversity. McGraw-Hill Book Company.Google Scholar
  46. De Barro, P. J., Liu, S.-S., Boykin, L. M., & Dinsdale, A. B. (2011). Bemisia tabaci: a statement of species status. Annual Review of Entomology, 56, 1–19.CrossRefPubMedGoogle Scholar
  47. Denholm, I., Devine, G.J., Gorman, K. and Horowitz, A.R. (2003) Insecticide resistance in Bemisia: a global perspective. Annals of the 3 rd International Bemisia Workshop, 113Google Scholar
  48. Deholm, I., & Birnie, L. (1990). Prospects for managing resistance to insecticides in the whitefly. Cotton production research from a farming systems perspective, with special emphasis on stickiness: papers presented at a technical seminar at the 49th plenary meeting of the International Cotton Advisory Committee (pp. 37–41). International Cotton Advisory Committee.Google Scholar
  49. Dennehy, T. J., Degain, B. A., Harpold, V. S., Zaborac, M., Morin, S., Fabrick, J. A., Nichols, R. L., Brown, J. K., Byrne, F. J., & Li, X. (2010). Extraordinary resistance to insecticides reveals exotic Q biotype of Bemisia tabaci in the New World. Journal of Economic Entomology, 103, 2174–2186.CrossRefPubMedGoogle Scholar
  50. Dittrich, V., Hassan, S. O., & Ernst, G. H. (1985). Sudanese cotton and the whitefly: a case study of the emergence of a new primary pest. Crop Protection, 4, 161–176.CrossRefGoogle Scholar
  51. Dittrich, V., Ernst, G. H., Ruesch, O., & Uk, S. (1990a). Resistance mechanisms in sweetpotato whitefly (Homoptera: Aleyrodidae) populations from Sudan, Turkey, Guatemala, and Nicaragua. Journal of Economic Entomology, 83, 1665–1670.CrossRefGoogle Scholar
  52. Dittrich, V., Uk, S., Ernst, G.H. (1990b). Chemical control and insecticide resistance of whiteflies. Whiteflies: their bionomics, pest status and management, 263–286.Google Scholar
  53. Duffus, J., & Flock, R. (1982). Whitefly-transmitted disease complex of the desert southwest. California Agriculture, 36, 4–7.Google Scholar
  54. Elbaz, M., Weiser, M., & Morin, S. (2011). Asymmetry in thermal tolerance trade-offs between the B and Q sibling species of Bemisia tabaci (Hemiptera: Aleyrodidae). Journal of Evolutionary Biology, 24, 1099–1109.CrossRefPubMedGoogle Scholar
  55. Elbert, A., & Nauen, R. (2000). Resistance of Bemisia tabaci (Homoptera: Aleyrodidae) to insecticides in southern Spain with special reference to neonicotinoids. Pest Management Science, 56, 60–64.CrossRefGoogle Scholar
  56. Erdogan, C., Moores, G. D., Gurkan, M. O., Gorman, K. J., & Denholm, I. (2008). Insecticide resistance and biotype status of populations of the tobacco whitefly Bemisia tabaci (Hemiptera: Aleyrodidae) from Turkey. Crop Protection, 27, 600–605.CrossRefGoogle Scholar
  57. Eveleens, K. G. (1983). Cotton-insect control in the Sudan Gezira: analysis of a crisis. Crop Protection, 2, 273–287.CrossRefGoogle Scholar
  58. Farghaly, S. F. (2010). Biochemical monitoring for insecticides resistance in whitefly Bemisia tabaci. American-Eurasian Journal of Agriculture & Environmental Sciences, 8, 383–389.Google Scholar
  59. Feng, Y. T., Wu, Q. J., Xu, B. Y., Wang, S. L., Chang, X. L., Xie, W., et al. (2009). Fitness costs and morphological change of laboratory-selected thiamethoxam resistance in the B-type Bemisia tabaci (Hemiptera: Aleyrodidae). Journal of Applied Entomology, 133, 466–472.CrossRefGoogle Scholar
  60. Feng, Y., Wu, Q., Wang, S., Chang, X., Xie, W., Xu, B., & Zhang, Y. (2010). Cross-resistance study and biochemical mechanisms of thiamethoxam resistance in B-biotype, Bemisia tabaci (Hemiptera: Aleyrodidae). Pest Management Science, 66, 313–318.CrossRefPubMedGoogle Scholar
  61. Fernández, E., Grávalos, C., Haro, P. J., Cifuentes, D., & Bielza, P. (2009). Insecticide resistance status of Bemisia tabaci Q biotype in south eastern Spain. Pest Management Science, 65, 885–891.CrossRefPubMedGoogle Scholar
  62. Forgash, A. J., & Hansens, E. J. (1967). Resistance levels in diazinon-pressured and nonpressured polyresistant house flies. Journal of Economic Entomology, 60, 1241–1247.CrossRefPubMedGoogle Scholar
  63. Forrester, N. W. (1990). Designing, implementing and servicing an insecticide resistance management strategy. Pesticide Science, 28, 167–179.CrossRefGoogle Scholar
  64. Foster, S. P., Young, S., Williamson, M. S., Duce, I., Denholm, I., & Devine, G. J. (2003). Analogous pleiotropic effects of insecticide resistance genotypes in peach–potato aphids and houseflies. Heredity, 91, 98–106.CrossRefPubMedGoogle Scholar
  65. Gerling, D. (1990). Whiteflies: their bionomics, pest status and management (348 pp.). Wimborne UK: Intercept Limited.Google Scholar
  66. Gerling, D., Alomar, Ò., & Arnò, J. (2001). Biological control of Bemisia tabaci using predators and parasitoids. Crop Protection, 20, 779–799.CrossRefGoogle Scholar
  67. Gorman, K., Slater, R., Blande, J. D., Clarke, A., Wren, J., Mccaffery, A., et al. (2010). Cross-resistance relationships between neonicotinoids and pymetrozine in Bemisia tabaci (Hemiptera: Aleyrodidae). Pest Management Science, 66, 1186–1190.CrossRefPubMedGoogle Scholar
  68. Gould, F., Kennedy, G. G., & Johnson, M. T. (1991). Effects of natural enemies on the rate of herbivore adaptation to resistant host plants. Entomologia Experimentalis et Applicata, 58, 1–14.CrossRefGoogle Scholar
  69. Goulson, D. (2013). Review: An overview of the environmental risks posed by neonicotinoid insecticides. Journal of Applied Ecology, 50, 977–987.CrossRefGoogle Scholar
  70. Greathead, A. H. (1986). Host plants. Bemisia tabaci. In M. J. W. Cock (Ed.), Bemisia tabaci—a literature survey on the cotton whitefly with an annotated bibliography (pp. 17–26). Ascot, UK: CAB.Google Scholar
  71. Gutiérrez-Olivares, M., Rodríguez-Maciel, J. C., Llanderal-Cázares, C., Terán-Vargas, A. P., Lagunes-Tejeda, Á., & Díaz-Gómez, O. (2007). Stability of resistance to neonicotinoids in Bemisia tabaci (Gennadius) B biotype, from San Luis Potosí, México. Agrociencia (Montecillo), 41, 913–920.Google Scholar
  72. He, Y. X., Weng, Q. Y., Huang, J., Liang, Z. S., Lin, G. J., & Wu, D. D. (2007). [insecticide resistance of Bemisia tabaci field populations]. Ying yong sheng tai xue bao= The journal of applied ecology/Zhongguo sheng tai xue xue hui. Zhongguo ke xue yuan Shenyang ying yong sheng tai yan jiu suo zhu ban, 18, 1578–1582.Google Scholar
  73. Horowitz, A. R., & Ishaaya, I. (2004). Insect pest management: field and protected crops. New York: Springer Science & Business Media.Google Scholar
  74. Horowitz, A. R., Gorman, K., Ross, G., & Denholm, I. (2003). Inheritance of pyriproxyfen resistance in the whitefly, Bemisia tabaci (Q biotype). Archives of Insect Biochemistry and Physiology, 54, 177–186.CrossRefPubMedGoogle Scholar
  75. Horowitz, A. R., Kontsedalov, S., & Ishaaya, I. (2004). Dynamics of resistance to the neonicotinoids acetamiprid and thiamethoxam in Bemisia tabaci (Homoptera: Aleyrodidae). Journal of Economic Entomology, 97, 2051–2056.CrossRefPubMedGoogle Scholar
  76. Horowitz, A. R., Kontsedalov, S., Khasdan, V., & Ishaaya, I. (2005). Biotypes B and Q of Bemisia tabaci and their relevance to neonicotinoid and pyriproxyfen resistance. Archives of Insect Biochemistry and Physiology, 58, 216–225.CrossRefPubMedGoogle Scholar
  77. Houndété, T. A., Kétoh, G. K., Hema, O. S. A., Brévault, T., Glitho, I. A., & Martin, T. (2010). Insecticide resistance in field populations of Bemisia tabaci (Hemiptera: Aleyrodidae) in West Africa. Pest Management Science, 66, 1181–1185.CrossRefPubMedGoogle Scholar
  78. Ilias, A., Lagnel, J., Kapantaidaki, D. E., Roditakis, E., Tsigenopoulos, C. S., Vontas, J., & Tsagkarakou, A. (2015). Transcription analysis of neonicotinoid resistance in Mediterranean (MED) populations of B. tabaci reveal novel cytochrome P450s, but no nAChR mutations associated with the phenotype. BMC Genomics, 16, 939.PubMedCentralCrossRefPubMedGoogle Scholar
  79. Jiao, X., Xie, W., Wang, S., Wu, Q., Zhou, L., Pan, H., Liu, B., & Zhang, Y. (2012). Host preference and nymph performance of B and Q putative species of Bemisia tabaci on three host plants. Journal of Pest Science, 85, 423–430.CrossRefGoogle Scholar
  80. Jones, D. R. (2003). Plant viruses transmitted by whiteflies. European Journal of Plant Pathology, 109, 195–219.CrossRefGoogle Scholar
  81. Jones, C. M., Daniels, M., Andrews, M., Slater, R., Lind, R. J., Gorman, K., Williamson, M. S., & Denholm, I. (2011). Age-specific expression of a P450 monooxygenase (CYP6CM1) correlates with neonicotinoid resistance in Bemisia tabaci. Pesticide Biochemistry and Physiology, 101, 53–58.CrossRefGoogle Scholar
  82. Kady, H. E. L., & Devine, G. J. (2003). Insecticide resistance in Egyptian populations of the cotton whitefly, Bemisia tabaci (Hemiptera: Aleyrodidae). Pest Management Science, 59, 865–871.CrossRefPubMedGoogle Scholar
  83. Kandil, M. A., Saleh, A. Y., El Dieb, W. H., & Farghaly, S. F. (2008). Resistance mechanisms of whitefly, Bemisia tabaci (Homoptera: Aleyrodidae) to thiamethoxam and profenofos. Asian Journal of Biological Sciences, 1, 33–38.CrossRefGoogle Scholar
  84. Kang, S., Lee, H. J., Kim, Y. H., Kwon, D. H., Oh, J. H., Kim, B. J., Lim, K. J., Lee, S., Hwang, S. Y., & Lee, S. H. (2012). Proteomics-based identification and characterization of biotype-specific carboxylesterase 2 putatively associated with insecticide resistance in Bemisia tabaci. Journal of Asia-Pacific Entomology, 15, 389–396.CrossRefGoogle Scholar
  85. Karunker, I., Benting, J., Lueke, B., Ponge, T., Nauen, R., Roditakis, E., Vontas, J., Gorman, K., Denholm, I., & Morin, S. (2008). Over-expression of cytochrome P450 CYP6CM1 is associated with high resistance to imidacloprid in the B and Q biotypes of Bemisia tabaci (Hemiptera: Aleyrodidae). Insect Biochemistry and Molecular Biology, 38, 634–644.CrossRefPubMedGoogle Scholar
  86. Karunker, I., Morou, E., Nikou, D., Nauen, R., Sertchook, R., Stevenson, B. J., Paine, M. J. I., Morin, S., & Vontas, J. (2009). Structural model and functional characterization of the Bemisia tabaci CYP6CM1vQ, a cytochrome P450 associated with high levels of imidacloprid resistance. Insect Biochemistry and Molecular Biology, 39, 697–706.CrossRefPubMedGoogle Scholar
  87. Kontsedalov, S., Abu-Moch, F., Lebedev, G., Czosnek, H., Horowitz, A. R., & Ghanim, M. (2012). Bemisia tabaci biotype dynamics and resistance to insecticides in Israel during the years 2008–2010. Journal of Integrative Agriculture, 11, 312–320.CrossRefGoogle Scholar
  88. Kranthi, K. R., Jadhav, D. R., Wanjari, R. R., Shakir Ali, S., & Russell, D. (2001). Carbamate and organophosphate resistance in cotton pests in India, 1995 to 1999. Bulletin of Entomological Research, 91, 37–46.PubMedGoogle Scholar
  89. Lenski, R. E. (1988). Experimental studies of pleiotropy and epistasis in Escherichia coli. I. Variation in competitive fitness among mutants resistant to virus T4. Evolution, 425–432.Google Scholar
  90. Li, X., Degain, B. A., Harpold, V. S., Marçon, P. G., Nichols, R. L., Fournier, A. J., Naranjo, S. E., Palumbo, J. C., & Ellsworth, P. C. (2012). Baseline susceptibilities of B- and Q-biotype Bemisia tabaci to anthranilic diamides in Arizona. Pest Management Science, 68, 83–91.CrossRefPubMedGoogle Scholar
  91. Liu, B., Yan, F., Chu, D., Pan, H., Jiao, X., Xie, W., Wu, Q., Wang, S., Xu, B., Zhou, X., & Zhang, Y. (2012b). Difference in feeding behaviors of two invasive whiteflies on host plants with different suitability: implication for competitive displacement. International Journal of Biological Sciences, 8, 697–706.PubMedCentralCrossRefPubMedGoogle Scholar
  92. Liu, S.-S., Colvin, J., & De Barro, P. J. (2012a). Species concepts as applied to the whitefly, Bemisia tabaci systematics: how many species are there? Journal of Integrative Agriculture, 11, 176–186.CrossRefGoogle Scholar
  93. Luo, C., Yao, Y., Wang, R., Yan, F., Hu, D., & Zhang, Z. (2002). The use of mitochondrial cytochrome oxidase I (mt CO I) gene sequences for the identification of biotypes of Bemisia tabaci (Gennadius) in China. Kun chong xue bao. Acta entomologica Sinica, 45, 757–763.Google Scholar
  94. Luo, C., Jones, C. M., Devine, G., Zhang, F., Denholm, I., & Gorman, K. (2010). Insecticide resistance in Bemisia tabaci biotype Q (Hemiptera: Aleyrodidae) from China. Crop Protection, 29, 429–434.CrossRefGoogle Scholar
  95. Ma, D., Gorman, K., Devine, G., Luo, W., & Denholm, I. (2007). The biotype and insecticide-resistance status of whiteflies, Bemisia tabaci (Hemiptera: Aleyrodidae), invading cropping systems in Xinjiang Uygur autonomous region, northwestern China. Crop Protection, 26, 612–617.CrossRefGoogle Scholar
  96. Ma, W., Li, X., Dennehy, T. J., Lei, C., Wang, M., Degain, B. A., & Nichols, R. L. (2010). Pyriproxyfen resistance of Bemisia tabaci (Homoptera: Aleyrodidae) biotype B: metabolic mechanism. Journal of Economic Entomology, 103, 158–165.CrossRefPubMedGoogle Scholar
  97. Mahadav, A., Kontsedalov, S., Czosnek, H., & Ghanim, M. (2009). Thermotolerance and gene expression following heat stress in the whitefly, Bemisia tabaci B and Q biotypes. Insect Biochemistry and Molecular Biology, 39, 668–676.CrossRefPubMedGoogle Scholar
  98. Mayo, O., & Buerger, R. (1997). The evolution of dominance: a theory whose time has passed? Biological Reviews of the Cambridge Philosophical Society, 72, 97–110.CrossRefGoogle Scholar
  99. Mckenzie, J.A. (1996). Ecological and evolutionary aspects of insecticide resistance. RG Landes.Google Scholar
  100. Mckenzie, J. A., & Batterham, P. (1994). The genetic, molecular and phenotypic consequences of selection for insecticide resistance. Trends in Ecology & Evolution, 9, 166–169.CrossRefGoogle Scholar
  101. Mckenzie, J. A., Whitten, M. J., & Adena, M. A. (1982). The effect of genetic background on the fitness of diazinon resistance genotypes of the Australian sheep blowfly, Lucilia cuprina. Heredity, 49, 1–9.CrossRefGoogle Scholar
  102. Menn, J. J. (1996). Bemisia complex, an international crop protection problem waiting for a solution. Bemisia: 1995, taxonomy, biology, damage, control and management. Scholar
  103. Morales, F. J. (2006). Tropical whitefly IPM project. Advances in Virus Research, 69, 249–311.CrossRefGoogle Scholar
  104. Morin, S., Williamson, M. S., Goodson, S. J., Brown, J. K., Tabashnik, B. E., & Dennehy, T. J. (2002). Mutations in the Bemisia tabaci para sodium channel gene associated with resistance to a pyrethroid plus organophosphate mixture. Insect Biochemistry and Molecular Biology, 32, 1781–1791.CrossRefPubMedGoogle Scholar
  105. Nanjundiah, V. (1993). Why are most mutations recessive? Journal of Genetics, 72, 85–97.CrossRefGoogle Scholar
  106. Naranjo, S. E., Ellsworth, P. C., & Hagler, J. R. (2004). Conservation of natural enemies in cotton: role of insect growth regulators in management of Bemisia tabaci. Biological Control, 30, 52–72.CrossRefGoogle Scholar
  107. Nauen, R., & Denholm, I. (2005). Resistance of insect pests to neonicotinoid insecticides: current status and future prospects. Archives of Insect Biochemistry and Physiology, 58, 200–215.CrossRefPubMedGoogle Scholar
  108. Nauen, R., Stumpf, N., & Elbert, A. (2002). Toxicological and mechanistic studies on neonicotinoid cross resistance in Q-type Bemisia tabaci (Hemiptera: Aleyrodidae). Pest Management Science, 58, 868–875.CrossRefPubMedGoogle Scholar
  109. Nauen, R., Vontas, J., Kaussmann, M., & Wölfel, K. (2013). Pymetrozine is hydroxylated by CYP6CM1, a cytochrome P450 conferring neonicotinoid resistance in Bemisia tabaci. Pest Management Science, 69, 457–461.CrossRefPubMedGoogle Scholar
  110. Navas-Castillo, J., Fiallo-Olivé, E., & Sánchez-Campos, S. (2011). Emerging virus diseases transmitted by whiteflies. Annual Review of Phytopathology, 49, 219–248.CrossRefPubMedGoogle Scholar
  111. Naveen, N. C., Chaubey, R., Kumar, D., Rebijith, K. B., Rajagopal, R., Subrahmanyam, B., & Subramanian, S. (2017). Insecticide resistance status in the whitefly, Bemisia tabaci genetic groups Asia-I, Asia-II-1 and Asia-II-7 on the Indian subcontinent. Scientific Reports, 7.Google Scholar
  112. Omer, A. D., Johnson, M. W., Tabashnik, B. E., Costa, H. S., & Ullman, D. E. (1993a). Sweetpotato whitefly resistance to insecticides in Hawaii: intra-island variation is related to insecticide use. Entomologia Experimentalis et Applicata, 67, 173–182.CrossRefGoogle Scholar
  113. Omer, A. D., Johnson, M. W., Tabashnik, B. E., & Ullman, D. E. (1993b). Association between insecticide use and greenhouse whitefly (Trialeurodes vaporariorum Westwood) resistance to insecticides in Hawaii. Pesticide Science, 37, 253–259.CrossRefGoogle Scholar
  114. Palumbo, J. C., Horowitz, A. R., & Prabhaker, N. (2001). Insecticidal control and resistance management for Bemisia tabaci. Crop Protection, 20, 739–765.CrossRefGoogle Scholar
  115. Palumbo, J.C., Ellsworth, P.C., Dennehy, T.J., Nichols, R.L. (2003). Cross-Commodity Guidelines for Neoneonicotinoid Insecticides in Arizona. IPM Series 17. Publ. No. AZ1319. University of Arizona, College of Agriculture and Life Sciences, Cooperative Extension, Tucson, Arizona.Google Scholar
  116. Pan, H., Ge, D., Wang, S., Wu, Q., Xu, B., Xie, W., et al. (2010). Replacement of B biotype Bemisia tabaci by Q biotype B. tabaci in some areas of Beijing and Hebei. Plant Protection, 36, 40–44.Google Scholar
  117. Pérez, C. J., Alvarado, P., Narváez, C., Miranda, F., Hernández, L., Vanegas, H., Hruska, A., & Shelton, A. M. (2000). Assessment of insecticide resistance in five insect pests attacking field and vegetable crops in Nicaragua. Journal of Economic Entomology, 93, 1779–1787.CrossRefPubMedGoogle Scholar
  118. Prabhaker, N., Coudriet, D. L., & Meyerdirk, D. E. (1985). Insecticide resistance in the sweetpotato whitefly, Bemisia tabaci (Homoptera: Aleyrodidae). Journal of Economic Entomology, 78, 748–752.CrossRefGoogle Scholar
  119. Prabhaker, N., Coudriet, D. L., & Toscano, N. C. (1988). Effect of synergists on organophosphate and permethrin resistance in sweetpotato whitefly (Homoptera: Aleyrodidae). Journal of Economic Entomology, 81, 34–39.CrossRefGoogle Scholar
  120. Prabhaker, N., Toscano, N. C., & Coudriet, D. L. (1989). Susceptibility of the immature and adult stages of the sweetpotato whitefly (Homoptera: Aleyrodidae) to selected insecticides. Journal of Economic Entomology, 82, 953–958.CrossRefGoogle Scholar
  121. Prabhaker, N., Toscano, N. C., Castle, S. J., & Henneberry, T. J. (1997). Selection for imidacloprid resistance in silverleaf whiteflies from the Imperial Valley and development of a hydroponic bioassay for resistance monitoring. Pesticide Science, 51, 419–428.CrossRefGoogle Scholar
  122. Prabhaker, N., Castle, S., Henneberry, T. J., & Toscano, N. C. (2005). Assessment of cross-resistance potential to neonicotinoid insecticides in Bemisia tabaci (Hemiptera: Aleyrodidae). Bulletin of Entomological Research, 95, 535–543.CrossRefPubMedGoogle Scholar
  123. Qiong, R., Xu, Y.-H., Chen, L., Zhang, H.-Y., Jones, C. M., Devine, G. J., et al. (2012). Characterisation of neonicotinoid and pymetrozine resistance in strains of Bemisia tabaci (Hemiptera: Aleyrodidae) from China. Journal of Integrative Agriculture, 11, 321–326.CrossRefGoogle Scholar
  124. Qiu, B.-L., Ren, S.-X., Mandour, N. S., & Wen, S.-Y. (2006). Population differentiation of Bemisia tabaci (Gennadius)(Hemiptera: Aleyrodidae) by DNA polymorphism in China. Journal of Entomological Research, 30, 1–6.Google Scholar
  125. Qiu, B. L., Liu, L., Li, X. X., Mathur, V., Qin, Z. Q., & Ren, S. X. (2009). Genetic mutations associated with chemical resistance in the cytochrome P450 genes of invasive and native Bemisia tabaci (Hemiptera: Aleyrodidae) populations in China. Insect Sci., 16, 237–245.CrossRefGoogle Scholar
  126. Rauch, N., & Nauen, R. (2003). Identification of biochemical markers linked to neonicotinoid cross resistance in Bemisia tabaci (Hemiptera: Aleyrodidae). Archives of Insect Biochemistry and Physiology, 54, 165–176.CrossRefPubMedGoogle Scholar
  127. Riley, D. G., & Tan, W. (2003). Host plant effects on resistance to bifenthrin in silverleaf whitefly (Homoptera: Aleyrodidae). Journal of Economic Entomology, 96, 1315–1321.CrossRefPubMedGoogle Scholar
  128. Roditakis, E., Roditakis, N. E., & Tsagkarakou, A. (2005). Insecticide resistance in Bemisia tabaci (Homoptera: Aleyrodidae) populations from Crete. Pest Management Science, 61, 577–582.CrossRefPubMedGoogle Scholar
  129. Roditakis, E., Tsagkarakou, A., & Vontas, J. (2006). Identification of mutations in the para sodium channel of Bemisia tabaci from Crete, associated with resistance to pyrethroids. Pesticide Biochemistry and Physiology, 85, 161–166.CrossRefGoogle Scholar
  130. Roditakis, E., Grispou, M., Morou, E., Kristoffersen, J. B., Roditakis, N., Nauen, R., Vontas, J., & Tsagkarakou, A. (2009). Current status of insecticide resistance in Q biotype Bemisia tabaci populations from Crete. Pest Management Science, 65, 313–322.CrossRefPubMedGoogle Scholar
  131. Roush, R. T., & Mckenzie, J. A. (1987). Ecological genetics of insecticide and acaricide resistance. Annual Review of Entomology, 32, 361–380.CrossRefPubMedGoogle Scholar
  132. Roush, R. T., & Miller, G. L. (1986). Considerations for design of insecticide resistance monitoring programs. Journal of Economic Entomology, 79, 293–298.CrossRefGoogle Scholar
  133. Şahin, İ., İkten, C. (2017). Neonicotinoid resistance in Bemisia tabaci (Genn., 1889) (Hemiptera: Aleyrodidae) populations from Antalya, Turkey. Turkish Journal of Entomology, 41.Google Scholar
  134. Schuster, D.J., Mann, R. and Gilreath, P.R. (2006) Whitefly resistance update and proposed mandated burn down rule. Proceedings of Florida Tomato Institute, University of Florida, Gainesville, PRO, 523, 24-28Google Scholar
  135. Schuster, D. J., Mann, R. S., Toapanta, M., Cordero, R., Thompson, S., Cyman, S., et al. (2010). Monitoring neonicotinoid resistance in biotype B of Bemisia tabaci in Florida. Pest Management Science, 66, 186–195.PubMedGoogle Scholar
  136. Şengonca, Ç. (1975). Bietrag zum epidemischen Auftreten der Tabakmottenschildlaus, Bemisia tabaci, an Baumwollpflanzen in Südanatolien (Homoptera: Aleyrodidae). Anzeiger für Schadlingskunde, Pflanzenschutz, Umweltschutz, 48, 140–144.CrossRefGoogle Scholar
  137. Sethi, A., Bons, M. S., & Dilawari, V. K. (2008). Realized heritability and genetic analysis of insecticide resistance in whitefly, Bemisia tabaci (Genn.). Journal of Entomology, 5, 1–9.CrossRefGoogle Scholar
  138. Shadmany, M., Omar, D., & Muhamad, R. (2015). Biotype and insecticide resistance status of Bemisia tabaci populations from Peninsular Malaysia. Journal of Applied Entomology, 139, 67–75.CrossRefGoogle Scholar
  139. Shchukin, A., & Wool, D. (1994). Pyrethroid resistance and esterase activity in selected laboratory populations of sweetpotato whiteflies Bemisia tabaci (Homoptera: Aleyrodidae). European Journal of Entomology, 91, 285–285.Google Scholar
  140. Silva, L. D., Omoto, C., Bleicher, E., & Dourado, P. M. (2009). Monitoramento da suscetibilidade a inseticidas em populações de Bemisia tabaci (Gennadius)(Hemiptera: Aleyrodidae) no Brasil. Neotropical Entomology, 38, 116–125.CrossRefGoogle Scholar
  141. Sivasupramaniam, S., Dennehy, T. J., & Williams Iii, L. (1997). Management of pyrethroid-resistant whiteflies in Arizona cotton: selection, cross-resistance, and dynamics. Proc. 1997 Beltwide Cotton Conferences. National Cotton Council, Memphis, TN. pp. 1252–1258.Google Scholar
  142. Sun, D.-B., Li, J., Liu, Y.-Q., Crowder, D. W., & Liu, S.-S. (2014). Effects of reproductive interference on the competitive displacement between two invasive whiteflies. Bulletin of Entomological Research, 104, 334–346.CrossRefPubMedGoogle Scholar
  143. Sved, J. A., & Mayo, O. (1970). The evolution of dominance. Mathematical topics in population genetics (pp. 289–316).Google Scholar
  144. Tabashnik, B. E. (1991). Determining the mode of inheritance of pesticide resistance with backcross experiments. Journal of Economic Entomology, 84, 703–712.CrossRefPubMedGoogle Scholar
  145. Tabashnik, B. E., & Croft, B. A. (1982). Managing pesticide resistance in crop-arthropod complexes: interactions between biological and operational factors. Environmental Entomology, 11, 1137–1144.CrossRefGoogle Scholar
  146. Tabashnik, B. E., Liu, Y., Malvar, T., Heckel, D. G., Masson, L., & Ferre, J. (1998). Insect resistance to bacillus thuringiensis: uniform or diverse? Philosophical Transactions of the Royal Society, B: Biological Sciences, 353, 1751–1756.CrossRefGoogle Scholar
  147. Tabashnik, B. E., Liu, Y.-B., Dennehy, T. J., Sims, M. A., Sisterson, M. S., Biggs, R. W., & Carrière, Y. (2002). Inheritance of resistance to Bt toxin Cry1Ac in a field-derived strain of pink bollworm (Lepidoptera: Gelechiidae). Journal of Economic Entomology, 95, 1018–1026.CrossRefPubMedGoogle Scholar
  148. Tabashnik, B. E., Biggs, R. W., Higginson, D. M., Henderson, S., Unnithan, D. C., Unnithan, G. C., Ellers-Kirk, C., Sisterson, M. S., Dennehy, T. J., Carrière, Y., & Morin, S. (2005). Association between resistance to Bt cotton and cadherin genotype in pink bollworm. Journal of Economic Entomology, 98, 635–644.CrossRefPubMedGoogle Scholar
  149. Tan, W.J., Riley, D.G., Wolfenbarger, D.A. (1996). Quantification and genetic analysis of bifenthrin resistance in the silverleaf whitefly. The Southwestern entomologist (USA), 21, 265–275.Google Scholar
  150. Taylor, C. E., Quaglia, F., & Georghiou, G. P. (1983). Evolution of resistance to insecticides: a cage study on the influence of migration and insecticide decay rates. Journal of Economic Entomology, 76, 704–707.CrossRefGoogle Scholar
  151. Traboulsi, R. (1994). Bemisia tabaci: a report on its pest status with particular reference to the near east. FAO Plant Protection Bulletin, 42, 33–58.Google Scholar
  152. Tsagkarakou, A., Nikou, D., Roditakis, E., Sharvit, M., Morin, S., & Vontas, J. (2009). Molecular diagnostics for detecting pyrethroid and organophosphate resistance mutations in the Q biotype of the whitefly, Bemisia tabaci (Hemiptera: Aleyrodidae). Pesticide Biochemistry and Physiology, 94, 49–54.CrossRefGoogle Scholar
  153. Uyenoyama, M. K. (1986). Pleiotropy and the evolution of genetic systems conferring resistance to pesticides. Pesticide resistance: strategies and tactics for management (pp. 207–221). Washington, D.C.: National Academy Press.Google Scholar
  154. Vassiliou, V., Emmanouilidou, M., Perrakis, A., Morou, E., Vontas, J., Tsagkarakou, A., & Roditakis, E. (2011). Insecticide resistance in Bemisia tabaci from Cyprus. Insect Sci., 18, 30–39.CrossRefGoogle Scholar
  155. Wang, L., & Wu, Y. (2007). Cross-resistance and biochemical mechanisms of abamectin resistance in the B-type Bemisia tabaci. Journal of Applied Entomology, 131, 98–103.CrossRefGoogle Scholar
  156. Wang, Z., Yao, M., & Wu, Y. (2009). Cross-resistance, inheritance and biochemical mechanisms of imidacloprid resistance in B biotype Bemisia tabaci. Pest Management Science, 65, 1189–1194.CrossRefPubMedGoogle Scholar
  157. Wang, Z., Yan, H., Yang, Y., & Wu, Y. (2010). Biotype and insecticide resistance status of the whitefly Bemisia tabaci from China. Pest Management Science, 66, 1360–1366.CrossRefPubMedGoogle Scholar
  158. Wang, R., Wang, J.-D., Che, W.-N., & Luo, C. (2017a). First report of field resistance to cyantraniliprole, a new anthranilic diamide insecticide, on Bemisia tabaci MED in China. Journal of Integrative Agricuture, 60, 60345–60347.Google Scholar
  159. Wang, S., Zhang, Y., Yang, X., Xie, W., & Wu, Q. (2017b). Resistance monitoring for eight insecticides on the Sweetpotato Whitefly (Hemiptera: Aleyrodidae) in China. Journal of Economic Entomology, 110, 660–666.CrossRefPubMedGoogle Scholar
  160. Wilson, M., Moshitzky, P., Laor, E., Ghanim, M., Rami Horowitz, A., & Morin, S. (2007). Reversal of resistance to pyriproxyfen in the Q biotype of Bemisia tabaci (Hemiptera: Aleyrodidae). Pest Management Science, 63, 761–768.CrossRefPubMedGoogle Scholar
  161. Wood, R. J., & Bishop, J. A. (1981). Insecticide resistance: populations and evolution. Genetic consequences of man made change. Scholar
  162. Xie, W., Liu, Y., Wang, S., Wu, Q., Pan, H., Yang, X., et al. (2014). Sensitivity of Bemisia tabaci (Hemiptera: Aleyrodidae) to several new insecticides in China: effects of insecticide type and whitefly species, strain, and stage. Journal of Insect Science, 14, 261.PubMedCentralPubMedGoogle Scholar
  163. Yang, X., He, C., Xie, W., Liu, Y., Xia, J., Yang, Z., Guo, L., Wen, Y., Wang, S., & Wu, Q. (2016). Glutathione S-transferases are involved in thiamethoxam resistance in the field whitefly Bemisia tabaci Q (Hemiptera: Aleyrodidae). Pesticide Biochemistry and Physiology, 134, 73–78.Google Scholar
  164. Yuan, L., Wang, S., Zhou, J., Du, Y., Zhang, Y., & Wang, J. (2012). Status of insecticide resistance and associated mutations in Q-biotype of whitefly, Bemisia tabaci, from eastern China. Crop Protection, 31, 67–71.CrossRefGoogle Scholar
  165. Zang, L. S., Chen, W. Q., & Liu, S. S. (2006). Comparison of performance on different host plants between the B biotype and a non B biotype of Bemisia tabaci from Zhejiang, China. Entomologia Experimentalis et Applicata, 121, 221–227.CrossRefGoogle Scholar
  166. Zhang, Y., & Pan, H. (2011). Further spread of and domination by Bemisia tabaci biotype Q on field crops in China. Phytopathology, 101, 201–202.Google Scholar
  167. Zhang, N.-N., Liu, C.-F., Yang, F., Dong, S.-L., & Han, Z.-J. (2012). Resistance mechanisms to chlorpyrifos and F392W mutation frequencies in the acetylcholine esterase ace1 allele of field populations of the tobacco whitefly, Bemisia tabaci in China. Journal of Insect Science, 12, 41.PubMedCentralPubMedGoogle Scholar
  168. Zhuang, H. M., Wang, K. F., Zheng, L., Wu, Z. J., Miyata, T., & Wu, G. (2011). Identification and characterization of a cytochrome P450 CYP6CX1 putatively associated with insecticide resistance in Bemisia tabaci. Insect Sci., 18, 484–494.CrossRefGoogle Scholar
  169. Zimmer, C.T., Panini, M., Singh, K.S., Randall, E.L., Field, L.M., Roditakis, E., et al. (2016). Use of the synergist piperonyl butoxide can slow the development of alpha cypermethrin resistance in the whitefly, Bemisia tabaci. Insect molecular biology.Google Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Department of Plant ProtectionMinistry of National Food Security and ResearchIslamabadPakistan

Personalised recommendations