, Volume 47, Issue 1, pp 99–115 | Cite as

Plant nutrition for management of white mold in sweet basil

  • Dalia Rav David
  • Uri Yermiyahu
  • Moshe Fogel
  • Inna Faingold
  • Yigal EladEmail author


Plant nutrition affects plant diseases and epidemics development. The effects of supplemental nitrogen, potassium and calcium on white mold susceptibility in sweet basil were tested in pots and under commercial conditions. An increased concentration of N in the irrigation solution increased the N content of shoots, which led to higher susceptibility to white mold on cut shoots in a linear manner. Increased levels of K in the irrigation solution and in the sweet basil tissue resulted in an exponential decrease in the severity of white mold on cut shoots. Likewise, foliar application of K also significantly decreased white mold susceptibility. Lower K fertigation under commercial-like conditions significantly increased susceptibility to S. sclerotiorum infection. Calcium decreased disease susceptibility, but there was no additive effect when Ca was added to the K treatment. Combining Ca and K fertigation with foliar-applied KCl and fungicide (boscalid + pyraclostrobin) provided synergistic lower disease on cut shoots. The K spray was not as effective as the fungicide for suppressing disease. In conclusion, proper K fertilization and the application of Ca can significantly reduce the susceptibility of sweet basil shoots to S. sclerotiorum and may be integrated into management programs for proper disease control.


Calcium Fertilization Nitrogen Ocimum basilicum L. Potassium Sweet basil 



We acknowledge the assistance of Ahmed Hoshala, Ludmila Yosofov, Shoshana Suriano, Ziva Gilad, Ephraim Tzipilevitz, Ahiam Meir, Shahar Yitzhak, Tzion Deko, Dafna Harari, Shimon Pivonia, Ami Maduel, David Silverman, Shimon Biton, Yoel Hadad, Svetlana Dubrinin, Menahem Borenshtein and Ran Shulhani. This research was funded by the Herb Growers Board and by the Chief Scientist of the Israeli Ministry of Agriculture, project number 132-1408. Publication of the Agricultural Research Organization no. 543/14.


  1. Abawi, G. S., & Grogan, R. G. (1979). Epidemiology of diseases caused by Sclerotinia species. Phytopathology, 69, 899–904.CrossRefGoogle Scholar
  2. Abia, J. A., & Smith, B. N. (1980). Mineral nutritional status of pumpkin and infection by Sclerotinia sclerotiorum. Plant Physiology, 65, 106 (Abstr.).Google Scholar
  3. Arfaoui, A., El Hadrami, A., Adam, L. R., & Daayf, F. (2016). Pre-treatment with calcium enhanced defense-related genes' expression in the soybean's isoflavone pathway in response to Sclerotinia sclerotiorum. Physiological and Molecular Plant Pathology, 93, 12–21.CrossRefGoogle Scholar
  4. Arfaoui, A., El Hadrami, A., & Daayf, F. (2018). Pre-treatment of soybean plants with calcium stimulates ROS responses and mitigates infection by Sclerotinia sclerotiorum. Plant Physiology and Biochemistry, 122, 121–128.CrossRefGoogle Scholar
  5. Bangerth, F. (1979). Calcium related physiological disorders of plant. Annual Review of Phytopathology, 17, 97–122.CrossRefGoogle Scholar
  6. Bar-Tal, A., Baas, R., Ganmore-Neumann, R., Dik, A., Marissen, N., Silber, A., Davidov, S., Hazan, A., Kirshner, B., & Elad, Y. (2001). Rose flower production and quality as affected by Ca concentration in the petal. Agronomie, 21, 393–402.CrossRefGoogle Scholar
  7. Ben Yephet, Y. (1988). Control of sclerotia and apothecia of Sclerotinia sclerotiorum by metham sodium, methyl bromide and soil solarization. Crop Protection, 7, 25–27.CrossRefGoogle Scholar
  8. Biddle, A. J. (2001). Botrytis gray mold. In J. M. Kraft & F. L. Pfleger (Eds.), Compendium of pea diseases and pests (2nd ed., pp. 31–32). St. Paul: American Phytopathological Society Press.Google Scholar
  9. Datnoff, L. E., Elmer, W. E., & Huber, D. W. (Eds.). (2007). Mineral nutrition and plant disease. St. Paul: The American Phytopathological Society.Google Scholar
  10. Dudai, N., Chaimovitsh, D., Reuveni, R., Ravid, U., Larkov, O., & Putievsky, E. (2002). Breeding of sweet basil (Ocimum basilicum) resistant to Fusarium oxyxsporum f. sp. basilicum. Journal of Herbs Spices and Medicinal. Plants, 9, 45–51.Google Scholar
  11. Elad, Y., & Evensen, K. (1995). Physiological aspects of resistance to Botrytis cinerea. Phytopathology, 85, 637–643.Google Scholar
  12. Elad, Y., Israeli, L., Fogel, M., Rav David, D., Kenigsbuch, D., Chalupowicz, D., Maurer, D., Lichter, A., Silverman, D., Biton, S., Yitzhak, S., Harari, D., Maduel, A., Pivonia, S., & Adler, U. (2014). Conditions influencing the development of sweet basil grey mould and cultural measures for disease management. Crop Protection, 64, 67–77.CrossRefGoogle Scholar
  13. Elad, Y., Fogel, M., Silverman, D., Biton, S., Yitzhak, S., Harari, D., & Adler, U. (2015). White mould of sweet basil: Conditions influencing its development in greenhouses and cultural measures for disease management. Plant Pathology, 64, 951–960.CrossRefGoogle Scholar
  14. Engelhard, W. (1989). Soilborne plant pathogens: Management of diseases with macro- and microelements. St. Paul: American Phytopathological Society.Google Scholar
  15. Erel, R., Dag, A., Ben-Gal, A., Schwartz, A., & Yermiyahu, U. (2008). Flowering and fruit-set of young olive (Olea europea L. cv. Barnea) trees in response to nitrogen, phosphorus and potassium. Journal of the American Society of Horticultural Sciences, 133, 639–647.CrossRefGoogle Scholar
  16. Garibaldi, A., Gullino, M. L., & Minuto, G. (1997). Diseases of basil and their management. Plant Disease, 81, 124–132.CrossRefGoogle Scholar
  17. Hartill, W. F. T. (1980). Aerobiology of Sclerotinia sclerotiorum and Botrytis cinerea spores in New Zealand tobacco crops. New Zealand Agricultural Research, 23, 259–262.CrossRefGoogle Scholar
  18. Hobbs, E. L., & Waters, W. E. (1964). Influence of nitrogen and potassium on susceptibility of Chrysanthemum morifolium to Botrytis cinerea. Phytopathology, 54, 674–676.Google Scholar
  19. Hochmuth, R. C., Davis, L. L. L., Laughlin, W. L., Simonne, E. H., & Sprenkel, R. K. (2004). Developing a production system for growing organic herbs using soilless culture in a greenhouse. University of Florida Cooperation Extension Service, 22, 37–42.Google Scholar
  20. Holcomb, G. E., & Reed, M. J. (1994). Stem rot of basil caused by Sclerotinia sclerotiorum. Plant Disease, 78, 924.CrossRefGoogle Scholar
  21. Kirkby, E. A., & Pilbeam, D. J. (1984). Calcium as a plant nutrient. Plant and Cell Environment, 7, 397–405.CrossRefGoogle Scholar
  22. Koike, S. T. (2000). Occurrence of stem rot of basil, caused by Sclerotinia sclerotiorum, in coastal California. Plant Disease, 84, 1342.CrossRefGoogle Scholar
  23. Kosman, E., & Cohen, Y. (1996). Procedures for calculating the differentiating synergism and antagonism in action of fungicide mixtures. Phytopathology, 86, 1263–1272.Google Scholar
  24. Leigh, R. A., & Wyn Jones, R. G. (1984). A hypothesis relating critical potassium concentrations for growth to the distribution and functions of this ion in the plant cell. New Phytologist, 97, 1–13.CrossRefGoogle Scholar
  25. Levy, Y., Benderly, M., Cohen, Y., Gisi, U., & Bass, D. (1986). The joint action of fungicides in mixtures: Comparison of two methods for synergy calculation. Bulletin EPPO, 16, 651–657.CrossRefGoogle Scholar
  26. Liang, X., & Rollins, J. A. (2018). Mechanisms of broad host range necrotrophic pathogenesis in Sclerotinia sclerotiorum. Phytopathology, 108, 1128–1140.CrossRefGoogle Scholar
  27. Marschner, H. (1986). Mineral Nutrition of higher plants (pp. 229–448). London: Academic Press.Google Scholar
  28. Mbengue, M., Navaud, O., Peyraud, R., Barascud, M., Badet, T., Vincent, R., Barbacci, A., & Raffaele, S. (2016). Emerging trends in molecular interactions between plants and the broad host range fungal pathogens Botrytis cinerea and Sclerotinia sclerotiorum. Frontiers in Plant Sciences, 31.
  29. Newton, H. C., & Sequeira, L. (1972). Ascospores of primary infective propagules of Sclerotinia sclerotiorum in Wisconsin. Plant Disease Reporter, 56, 789–802.Google Scholar
  30. Ouhibi, C., Attia, H., Nicot, P., Lecompte, F., Vidal, V., Lachaal, M., Urban, L., & Aarrouf, J. (2015). Effects of nitrogen supply and of UV-C irradiation on the susceptibility of Lactuca sativa L. to Botrytis cinerea and Sclerotinia minor. Plant and Soil, 393, 35–46.CrossRefGoogle Scholar
  31. Paula Júnior Trazilbo, J., Vieira, R. F., Teixeira, H., & Carneiro, J. E. S. (2009). Foliar application of calcium chloride and calcium silicate decreases white mold intensity on dry beans. Tropic. Plant Pathology, 34, 171–174.Google Scholar
  32. Paulitz, T. C. (1997). First report of Sclerotinia sclerotiorum on basil in Canada. Plant Disease, 81, 229.CrossRefGoogle Scholar
  33. Poovaiah, B. W., Reddy, A. S. N., & McFadden, J. J. (1987). Calcium messenger system: Role of protein phosphorylation and inositol bisphospholipids. Physiologia Plantarum, 69, 569–573.CrossRefGoogle Scholar
  34. Prabhu, A. S., Fageria, N. K., Huber, D. M., & Rodrigues, F. A. (2008). Potassium and plant disease. In L. E. Datnoff, W. H. Elmer, & D. M. Huber (Eds.), Mineral nutrition and plant disease (pp. 57–78). St Paul: APS Press.Google Scholar
  35. Schachtman, D. P., & Shin, R. (2006). Nutrient sensing and signaling: NPKS. Annual Review of Plant Biology, 58, 47–69.CrossRefGoogle Scholar
  36. Shtienberg, D., Elad, Y., Borenshtein, M., Ziv, G., Grava, A., & Cohen, S. (2010). Polyethylene mulch modulates greenhouse microclimate and reduces infection of Phytophthora infestans in tomato and Pseudoperonospora cubensis in cucumber. Phytopathology, 100, 97–104.CrossRefGoogle Scholar
  37. Suelter, C. H. (1970). Enzymes activated by monovalent cations. Science, 168, 789–795.CrossRefGoogle Scholar
  38. Sweeny, D. W., Granade, G. V., Eversmeyer, M. G., & Whitney, D. A. (2000). Phosphorus, potassium, chloride, and fungicide effects on wheat yield and leaf rust severity. Journal of Plant Nutrition, 23, 1267–1281.CrossRefGoogle Scholar
  39. Volpin, H., & Elad, Y. (1991). Influence of calcium nutrition on susceptibility of rose flowers to gray mold. Phytopathology, 81, 1390–1394.CrossRefGoogle Scholar
  40. Yermiyahu, U., Israeli, L., Rav David, D., Faingold, I., & Elad, Y. (2015). Higher potassium concentration in shoots reduces gray mold in sweet basil. Phytopathology, 105, 1059–1068.CrossRefGoogle Scholar
  41. Yermiyahu, U., Shamai, I., Peleg, R., Dudai, N., & Shtienberg, D. (2006). Reduction of Botrytis cinerea sporulation in sweet basil by altering the concentrations of nitrogen and calcium in the irrigation solution. Plant Pathology, 55, 544–552.CrossRefGoogle Scholar
  42. Youssef, K., & Roberto, S. R. (2014). Applications of salt solutions before and after harvest affect the quality and incidence of postharvest gray mold of 'Italia' table grapes. Postharvest Biology and Technology, 87, 95–102.CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Department of Plant Pathology and Weed Research, Agricultural Research OrganizationThe Volcani CenterRishon LeZionIsrael
  2. 2.Institute of Soil, Water and Environmental Sciences, Agricultural Research Organization, Gilat Research CenterMobile Post NegevIsrael

Personalised recommendations