Advertisement

Temporal pattern of adult emergence and sexual behavior of Scopula subpunctaria (Lepidoptera: Geometridae)

  • Tao Ma
  • Xianhui Shi
  • Na Lin
  • Zhibo Wang
  • Qiang Xiao
  • Zhaohui Sun
  • Xiujun Wen
Article
  • 16 Downloads

Abstract

The objective of this research was to study the reproductive behavior (emergence, calling, mating and oviposition) of Scopula subpunctaria (Lepidoptera: Geometridae) under laboratory conditions (26 ± 1 °C, 12 h photophase and 75 ± 1% RH). The emergence occurred during the scotophase and photophase, but mainly during the scotophase. Females and males simultaneously emerged during the 1st to 12th h of scotophase. However, the calling and mating behavior were limited to nocturnal hours. Adults were engaged in sexual activity (calling) as soon as one day after emergence. Virgin females began calling actively at 2.5 h–3 h into the scotophase, and with a peak occurring at 7.5 h of the scotophase. The maximum number of mating occurred when the couple was 2-d-old, the longest mating duration occurred when the couple was 5-d-old (230 ± 20.2 min), and the mating peak occurred from 6 h to 8 h of scotophase. The males could mate twice and females only mate once. Oviposition behavior also occurred during the scotophase. Females laid eggs from the first day after mating until the eighth day, with a peak occurring at the second day (111 ± 5.6). The emergence, calling, mating and oviposition patterns of S. subpunctaria are discussed and future research is outlined. New technology is currently available for the control of this pest, possibly involving the use of pheromones for trapping or disrupting the mating cycle of the insect.

Keywords

Tea looper Emergence Female calling Mating behavior Oviposition pattern 

Notes

Acknowledgments

We are grateful to three anonymous reviewers for providing valuable and constructive comments on an earlier draft of this manuscript. This research was funded by the National Natural Science Foundation of China (No. 31600516) and the Transformation and Hatching Project of Scientific and Technological Achievements of South China Agricultural University (CGZHT2018002).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. Agosta, S. J. (2010). Male body size and mating success and their relation to larval host plant history in the moth Rothschildia lebeau in Costa Rican dry forest. Biotropica, 42, 201–207.CrossRefGoogle Scholar
  2. Alcock, J. (1994). Postinsemination associations between males and females in insects: The male guarding hypothesis. Annual Review of Entomology, 39, 1–21.CrossRefGoogle Scholar
  3. Altesor, P., Horas, V. R., Arcia, M. P., Rossini, C., Zarbin, P. H. G., & González, A. (2010). Reproductive behaviour of Crocidosema (=Epinotia) aporema (Walsingham) (Lepidoptera: Tortricidae): Temporal pattern of female calling and mating. Neotropical Entomology, 39(3), 324–329.CrossRefGoogle Scholar
  4. Ambrogi, B. G., Fonseca, M. G., Coracini, M. D. A., & Zarbin, P. H. G. (2009). Calling behavior and male response towards sex pheromone of poplar moth Condylorrhiza vestigialis (Lepidoptera: Crambidae). Journal of Pest Science, 82, 55–60.CrossRefGoogle Scholar
  5. Carroll, S. P. (1991). The adaptive significance of mate guarding in the soapberry bug, Jadera haematoloma (Hemiptera: Rhopalidae). Journal of Insect Behavior, 4, 509–530.CrossRefGoogle Scholar
  6. Cui, G. Z., & Zhu, J. W. (2016). Pheromone-based pest management in China: Past, present, and future prospects. Journal of Chemical Ecology, 42(7), 557–570.CrossRefGoogle Scholar
  7. Daan, S. (1981). Adaptive daily strategies in behavior. In: Aschoff J (ed) Handbook of behavioral neurobiology, vol 4., biological rhythms, Plenum Press, London and New York, pp 275–298.Google Scholar
  8. Dai, W. R., Liu, X. Q., Wu, R. F., & Shi, X. P. (1999). Study on the biology of Sucra jujuba Chu. Journal of Shanxi Agricultural University, 19(3), 198–200 (In Chinese).Google Scholar
  9. Dickinson, J. L. (1986). Prolonged mating in the milkweed leaf beetle Labidomera clivicollis clivicollis (Coleoptera: Chrysomelidae): A test of the “sperm-loading” hypothesis. Behavioral Ecology and Sociobiology, 18, 331–338.CrossRefGoogle Scholar
  10. Dreisig, H. (1986). Timing of daily activities in adult Lepidoptera. Entomologia Generalis, 12, 25–43.CrossRefGoogle Scholar
  11. Duan, J. P., Shao, D. H., Zhang, Z. L., & Duan, L. Q. (2014). The bionomics of Erannis ankeraria Staudinger. Chinese Journal of Applied Entomology, 51(3), 808–813 (In Chinese).Google Scholar
  12. Eiras, Á. E. (2000). Calling behaviour and evaluation of sex pheromone glands extract of Neoleucinodes elegantalis Guenée (Lepidoptera: Crambidae) in wind tunnel. Anais da Sociedade Entomológica do Brasil, 29, 453–460.CrossRefGoogle Scholar
  13. Fagerstrom, T., & Wiklund, C. (1982). Why do males emerge before females? Protandry as a mating strategy in male and female butterflies. Oecologia, 52, 164–166.CrossRefGoogle Scholar
  14. García-González, F., & Gomendio, M. (2004). Adjustment of copula duration and ejaculate size according to the risk of sperm competition in the golden egg bug (Phyllomorpha laciniata). Behavioral Ecology, 15, 23–30.CrossRefGoogle Scholar
  15. Ge, C. M., Yin, K. S., Tang, M. J., & Xiao, Q. (2016). Biological characteristics of Ectropis grisescens Warren. Acta Agriculturae Zhejiangensis, 28(3), 464–468 (In Chinese).Google Scholar
  16. Hight, S. D., Bloem, S., Bloem, K. A., & Carpenter, J. E. (2003). Cactoblastis cactorum (Lepidoptera: Pyralidae): Observations of courtship and mating behaviors at two locations on the gulf coast of Florida. Florida Entomologist, 86(4), 400–408.CrossRefGoogle Scholar
  17. Hong, Z. H., Yin, K. S., Zhou, X. G., & Xiao, Q. (2016). Female and male identification of several tea insect pests. China Tea, (9), 22-23(In Chinese).Google Scholar
  18. Howlader, M. A., & Gerber, G. H. (1986). Calling behavior of the bertha armyworm, Mamestra configurata (Lepidoptera: Noctuidae). Canadian Entomologist, 118, 735–743.CrossRefGoogle Scholar
  19. Hu, W. J., Chen, W. L., Wei, W., & Xu, X. Q. (2010). Scanning electron microscopic observation of sensilla on the antenna of male adult Scopula subpunctaria. Chinese Bulletin of Entomology, 47(5), 938–940 (In Chinese).Google Scholar
  20. Kamiya, A. C., Silva, W. D., Leite, M. O. G., Tironi, P., Wadt, L., & Bento, J. M. S. (2015). Mating behavior and evidence for male-produced aggregation pheromone in Cyrtomon luridus (Boheman) (Coleoptera: Curculionidae: Entiminae). Journal of Insect Behavior, 28, 55–66.CrossRefGoogle Scholar
  21. Katsuki, M., & Miyatake, T. (2009). Effects of temperature on mating duration, sperm transfer and remating frequency in Callosobruchus chinensis. Journal of Insect Physiology, 55, 113–116.CrossRefGoogle Scholar
  22. Kawazu, K., & Tatsuki, S. (2002). Diel rhythms of calling behavior and temporal change in pheromone production of the rice leaffolder moth, Cnaphalocrocis medinalis (Lepidoptera: Crambidae). Applied Entomology and Zoology, 37(1), 219–224.CrossRefGoogle Scholar
  23. Kikukawa, S., Hashizume, R., Honda, M., Inoue, Y., Maekawa, T., Sakata, R., Takahashi, N., Tanaka, K., & Uchida, Y. (2013). Adult eclosion rhythm of the Indian meal moth Plodia interpunctella: Response to various thermocycles with different means and amplitudes. Physiological Entomology, 38, 253–259.CrossRefGoogle Scholar
  24. Kingan, T. G., Thomaslaemont, P. A., & Raina, A. K. (1993). Male accessory gland factors elicit change from virgin to mated behavior in the female corn earworm moth Helicoverpa zea. Journal of Experimental Biology, 183, 61–76.Google Scholar
  25. Kumara, A. D. N. T., Chandrashekharaiah, M., Subaharan, K., & Chakravarthy, A. K. (2015). Periodicity of adult emergence and sexual behaviour of coconut black headed caterpillar, Opisina arenosella Walker (Lepidoptera: Oecophoridae). Phytoparasitica, 43, 701–712.CrossRefGoogle Scholar
  26. Larsen, E., Calabrese, J. M., Rhainds, M., & Fagan, W. F. (2012). How protandry and protogyny affect female mating failure: A spatial population model. Entomologia Experimentalis et Applicata, 146, 130–140.CrossRefGoogle Scholar
  27. Larsson, M. C. (2016). Pheromones and other semiochemicals for monitoring rare and endangered species. Journal of Chemical Ecology, 42(9), 853–868.CrossRefGoogle Scholar
  28. Lucchi, A., & Benelli, G. (2018). Towards pesticide-free farming? Sharing needs and knowledge promotes integrated Pest management. Environmental Science and Pollution Research, 25(14), 13439–13445.CrossRefGoogle Scholar
  29. Lucchi, A., Sambado, P., Juan Royo, A. B., Bagnoli, B., & Benelli, G. (2018). Lobesia botrana males mainly fly at dusk: Video camera-assisted pheromone traps and implications for mating disruption. Journal of Pest Science, 91(4), 1327–1334.CrossRefGoogle Scholar
  30. Ma, T., Li, Y. Z., Sun, Z. H., & Wen, X. J. (2014). (Z, E)-9,12-Tetradecadien-1-ol: A major sex pheromone component from Euzophera pyriella (Lepidoptera: Pyralididae) in Xinjiang, China. Florida Entomologist, 97, 496–503.CrossRefGoogle Scholar
  31. Ma, T., Liu, Z. T., Lu, J., Sun, Z. H., Li, Y. Z., Wen, X. J., & Cui, Y. Z. (2015). A key compound: (Z)-9-tetradecen-1-ol as sex pheromone active component of Hypsipyla robusta (Lepidoptera: Pyralidae). Chemoecology, 25, 325–330.CrossRefGoogle Scholar
  32. Ma, T., Xiao, Q., Yu, Y. G., Wang, C., Zhu, C. Q., Sun, Z. H., Chen, X. Y., & Wen, X. J. (2016). Analysis of tea geometrid (Ectropis grisescens) pheromone gland extracts using GC-EAD and GC×GC/TOFMS. Journal of Agricultural and Food Chemistry, 64, 3161–3166.CrossRefGoogle Scholar
  33. Ma, T., Liu, Z. T., Wang, C., Zhang, S. N., Shi, X. H., Chen, X. Y., Jia, C. J., Wang, C. L., He, Y. R., & Wen, X. J. (2017). Production, identification, and field evaluation of sex pheromone from calling females in Diaphania angustalis (Lepidoptera: Crambidae). Environmental Science and Pollution Research, 24(31), 24485–24493.CrossRefGoogle Scholar
  34. Ma, T., Zhang, Y. Y., Wang, S. K., Lan, L. J., Lin, N., Wang, C., Wu, Y. J., Chang, M. S., Sun, Z. H., Wang, C. L., & Wen, X. J. (2018). Reproductive behavior and sex pheromone production in Eutectona machaeralis (Lepidoptera: Crambidae). Florida Entomologist, 101(2), 189–194.CrossRefGoogle Scholar
  35. Nagayama, A., Arakaki, N., Kishita, M., & Yamada, Y. (2004). Emergence and mating behavior of the pink borer, Sesamia inferens (Walker) (Lepidoptera: Noctuidae). Applied Entomology and Zoology, 39, 625–629.CrossRefGoogle Scholar
  36. Niepoth, N., Gao, K., de Roode, J. C., & Groot, A. T. (2018). Comparing behavior and clock gene expression between caterpillars, butterflies and moths. Journal of Biological Rhythms, 33, 52–64.CrossRefGoogle Scholar
  37. Parra-Pedrazzolli, A. L., & Leal, W. S. (2006). Sexual behavior of the navel orangeworm, Amyelois transitella (Walker) (Lepidoptera: Pyralidae). Neotropical Entomology, 35, 769–774.CrossRefGoogle Scholar
  38. Pittendrigh, C. S. (1954). On temperature independence in the clock controlling emergence time in Drosophila. Proceedings of the National Academy of Sciences of the United States of America, 40, 1018–1029.CrossRefGoogle Scholar
  39. Pompanon, F., Fouillet, P., & Bouletréau, M. (1995). Emergence rhythms and protandry in relation to daily patterns of locomotor activity in Trichogramma species. Ecology and Evolution, 9, 467–477.CrossRefGoogle Scholar
  40. Rojas, J. C., & Cibrián-Tovar, J. (1994). Calling behavior of Copitarsia consueta (Lepidoptera: Noctuidae). Florida Entomologist, 77, 178–180.CrossRefGoogle Scholar
  41. Rull, J., Abraham, S., Schlisermann, P., Ordano, M., & Ovruski, S. (2017). Mating behavior and basic biology of Haywardina cuculi (Diptera: Tephritidae), a poorly known species exhibiting high variability in copulation duration. Journal of Insect Behavior, 30, 439–453.CrossRefGoogle Scholar
  42. Sadek, M. M., Wowern, G., Löfstedt, C., Rosén, W. Q., & Anderson, P. (2012). Modulation of the temporal pattern of calling behavior of female Spodoptera littoralis by exposure to sex pheromone. Journal of Insect Physiology, 58, 61–66.CrossRefGoogle Scholar
  43. Sarjami, M. S., Ghanbalani, G. N., Goldansaz, H., & Zakaria, R. A. (2009). Calling behaviour of the carob moth, Ectomyelois ceratoniae (Zeller) (Lepidoptera: Pyralidae), laboratory and field experiments. Munis Entomology and Zoology, 4(2), 472–485.Google Scholar
  44. Saunders, D. S. (2002). Insect clocks, 3rd ed. Elsevier, Amsterdam, The Netherlands.Google Scholar
  45. Shi, X. H., Ma, T., Zhang, S. N., Sun, Z. H., Chen, X. Y., Wang, C. L., Jia, C. J., Liang, Y. C., Zhu, Y., He, Y. R., & Wen, X. J. (2018). Calling and mating behavior of Diaphania angustalis (Lepidoptera: Crambidae). Journal of Economic Entomology, 111(5), 2250–2254.CrossRefGoogle Scholar
  46. Thornhill, R., & Alcock, J. (1983). The evolution of insect mating systems. Cambridge: Harvard University Press.CrossRefGoogle Scholar
  47. Wang, Z. B., Ma, T., Mao, T. F., Guo, H. W., Zhou, X. G., Wen, X. J., & Xiao, Q. (2018). Application technology of the sex pheromone of the tea geometrid Ectropis grisescens (Lepidoptera: Geometridae). International Journal of Pest Management, 64(4), 372–378.CrossRefGoogle Scholar
  48. Wei, Q., Adil, S., & Yan, W. B. (2016). Bionomics of Apocheima cinerarius Erschoff. Chinese Journal of Applied Entomology, 53(1), 174–184 (In Chinese).Google Scholar
  49. Witethom, B. (1992). Effects of age on calling and matting behavior of the sapodilla fruit borer, Nephopterix sp. (Lepidoptera: Pyralidae). Prinec of Songkla University, 18, 93–103.Google Scholar
  50. Witzgall, P., Kirsch, P., & Cork, A. (2010). Sex pheromones and their impact on pest management. Journal of Chemical Ecology, 36, 80–100.CrossRefGoogle Scholar
  51. Wu, S. H., Refinetti, R., Kok, L. T., Youngman, R. R., Reddy, G. V. P., & Xue, F. S. (2014). Photoperiod and temperature effects on the adult eclosion and mating rhythms in Pseudopidorus fasciata (Lepidoptera: Zygaenidae). Environmental Entomology, 43(6), 1650–1655.CrossRefGoogle Scholar
  52. Yao, E. Y., Li, Z. M., Luo, Z. Q., Shang, Z. Z., Yin, K. S., & Hong, B. B. (1991). Report on structural elucidation of sex pheromone components of a tea pest (Ectropis obliqua Prout). Progress in Natural Science, 1, 566–569.Google Scholar
  53. Yu, H., Zhou, Q., & Chen, W. G. (2001). Studies on biological characters of Ascotis selenaria cretacea Butler. Canye Kexue, 27(1), 1–5 (In Chinese).Google Scholar
  54. Zhang, W., Shen, L., Jiang, F., & Li, G. (2009). Outburst reason and control of Scopula subpunctaria in 2009, Sichuan, China. Sichuan Agricultural Technology, 8, 38–39 (In Chinese).Google Scholar
  55. Zhang, G. H., Yuan, Z. J., Zhang, C. X., Yin, K. S., Tang, M. J., Guo, H. W., Fu, J. Y., & Xiao, Q. (2014). Detecting deep divergence in seventeen populations of tea geometrid (Ectropis obliqua Prout) in China by COI mtDNA and cross-breeding. PLoS One, 9, e99373.CrossRefGoogle Scholar
  56. Zhou, K. N., Zhang, S. Y., Zeng, J. P., Luo, D., & Liu, X. P. (2016). Reproductive behavior of the masson pine caterpillar, Dendrolimus punctatus (Lepidoptera: Lasiocampidae) under laboratory conditions. Applied Entomology and Zoology, 51, 205–212.CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.College of AgricultureSouth China Agricultural UniversityGuangzhouChina
  2. 2.Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape ArchitectureSouth China Agricultural UniversityGuangzhouChina
  3. 3.Tea Research InstituteChinese Academy of Agricultural SciencesHangzhouChina

Personalised recommendations