Advertisement

Phytoparasitica

, Volume 47, Issue 1, pp 143–153 | Cite as

Detection of Tomato yellow leaf curl Thailand virus transmitted by Bemisia tabaci Asia I in tomato and pepper

  • S. Yule
  • P. Chiemsombat
  • Ramasamy SrinivasanEmail author
Article
  • 182 Downloads

Abstract

Tomato yellow leaf curl Thailand virus (TYLCTHV) has caused serious yield loss of tomato in Thailand for more than three decades. Control of the virus is essential for successful integrated disease management (IDM) strategies. This study investigated the capability of whitefly (Bemisia tabaci) to transmit TYLCTHV on two host plants—tomato and pepper—and sought to detect the presence of viral DNA in the plants and whiteflies after two transmissions. The new TYLCTHV isolate used in this study (SPN-Tom1A) was 2756 nts long with typical characteristics of TYLCTHV DNA-A. Viral DNA-A (WF-SPN Tom2015) also was detected in viruliferous whiteflies; nucleotide sequence revealed 99% identity to TYLCTHV SPN-Tom1A sequence. In duplicated transmission test, vector B. tabaci Asia I was highly efficient in transmitting TYLCTHV from tomato to tomato by 90–100%, followed by the transmission from tomato to pepper by 55–90%. In contrast, the transmission rate of TYLCTHV pepper to tomato seedlings was nil. Tomato plants showed upward cupping and yellow leaves typical of TYLCTHV infection only when TYLCTHV was transmitted from tomato to tomato, but when transmitted to pepper, the infected peppers were symptomless. Bodies of viruliferous whiteflies fed on tomato and pepper were confirmed by PCR for the presence of TYLCTHV at 58.89–80% and 60–89.45%, respectively. Our results thus provide evidence that pepper infected with TYLCTHV is not a source plant for TYLCTHV transmission to tomato.

Keywords

TYLCTHV Transmission Bemisia tabaci Tomato Pepper 

Notes

Acknowledgements

The authors are grateful for financial support provided for the Beating Begomoviruses project (11.7860.7-001.00) by the Federal Ministry for Economic Cooperation and Development (BMZ) through Deutsche Gesellschaft für Internationale Zusammenarbeit (GIZ) GmbH and from core donors to the World Vegetable Center: Republic of China (Taiwan), UK aid from the UK government, United States Agency for International Development (USAID), Australian Centre for International Agricultural Research (ACIAR), Germany, Thailand, Philippines, Korea, and Japan. We appreciate the use of laboratory facilities at the World Vegetable Center, East and Southeast Asia and the Molecular Plant Pathology Laboratory, Department of Plant Pathology, Faculty of Agriculture at Kamphaeng Saen, Kasetsart University, Kamphaeng Saen Campus. Thanks are also expressed to Ms. Jutarat Lidjun, PhD in Agricultural Biotechnology, for technical support in molecular analysis.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. Anokhe, A. (2015). Characterization of virus transmission in Asia I and Asia II-1 populations of whitefly, Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae). M.S. thesis, Indian Agricultural Research Institute at New Delhi, India.Google Scholar
  2. Attathom, S., Chiemsombat, P., Sutabutra, T., & Pongpanitanond, R. (1990). Characterization of nucleic acid of Tomato yellow leaf curl virus. Kasetsart Journal: Natural Science. Supplement, 24(5), 1–5.Google Scholar
  3. Attathom, S., Chiemsombat, P., Kositratana, W., & Sae-Ung, N. (1994). Complete nucleotide sequence and genome analysis of bipartite Tomato yellow leaf curl virus in Thailand. Kasetsart Journal: Natural Science, 28, 632–639.Google Scholar
  4. Chenna, R., Sugawara, H., Koike, T., Lopez, R., Gibson, T. J., Higgins, D. G., & Thompson, J. D. (2003). Multiple sequence alignment with the Clustal series of programs. Nucleic Acids Research, 31(13), 3497–3500.CrossRefGoogle Scholar
  5. Chiemsombat, P., & Srikamphung, B. (2015). Genetic variation of Begomoviruses infecting tomato and pepper in Thailand and whitefly transmissibility, pp.109–118. The 12 th National Plant Protection Conference: Pragmatic Crop Protection for Food safety and sustainable Thai economy. 20–22 October 2015, Weed science society of Thailand. Chiang Rai, Thailand.Google Scholar
  6. Chiemsombat, P., Srikamphung, B., & Yule, S. (2018). Begomoviruses associated to pepper yellow leaf curl disease in Thailand. Journal of Agricultural Research, 3(7), 000183.Google Scholar
  7. Chomdej, O., Whankaew, S., Chatchawankanpanich, O., Kositratana, W., & Chunwongse, J. (2008). Resistance to tomato yellow leaf curl Thailand virus, TYLCTHV-[2] from Solanum habrochaites accession 'L06112' in F1 and BC1F1 generations. Songklanakarin Journal of Science and Technology, 30, 441–446.Google Scholar
  8. Chomdej, O., Pongpayaklers, U., & Chunwongse, J. (2012). Resistance to tomato yellow leaf curl virus-Thailand isolate (TYLCTHV-[2]) and markers loci association in BC2F1 population from a cross between Seedathip 3 and a wild tomato, Solanum habrochaites' L06112'clone no. 1. Songklanakarin Journal of Science & Technology, 34, 31–36.Google Scholar
  9. Dader, B., Then, C., Berthelot, E., Ducousso, M., Ng, J. C. K., & Drucker, M. (2017). Insect transmission of plant viruses: Multilayered interactions optimize viral propagation. Insect Sci., 24, 929–946.  https://doi.org/10.1111/1744-7917.12470.CrossRefGoogle Scholar
  10. De Barro, P., Liu, S.-S., Boykin, L. M., & Dinsdale, A. B. (2011). Bemisia tabaci: A statement of species status. Annual Reviewof Entomology, 56, 1–19.CrossRefGoogle Scholar
  11. Dellaporta, S. L., Wood, J., & Hicks, J. B. (1983). A plant DNA mini preparation: Version II. Plant Molecular Biology Reporter, 1, 19–21.CrossRefGoogle Scholar
  12. Dinsdale, A., Cook, L., Riginos, C., Buckley, Y. M., & De Barro, P. (2010). Refined global analysis of Bemisia tabaci (Hemiptera: Sternorrhyncha: Aleyrodoidea: Aleyrodidae) mitochondrial cytochrome oxidase 1 to identify species level genetic boundaries. Annals of the Entomological Society of America, 103(2), 196–208.CrossRefGoogle Scholar
  13. Fang, Y., Jiao, X., Xie, W., Wang, S., Wu, Q., Shi, X., Chen, G., Su, Q., Yang, X., Pan, H., & Zhang, Y. (2013). Tomato yellow leaf curl virus alters the host preferences of its vector Bemisia tabaci. Scientific Reports, 3.  https://doi.org/10.1038/srep02876.
  14. Fanigliulo, A., Pacella, R., Comes, S., & Crescenzi, A. (2008). First record of Tomato yellow leaf curl Sardinia virus (TYLCSV) on pepper in Italy. Communications in Agricultural and Applied Biological Sciences, 73(2), 297–302.Google Scholar
  15. Ghanim, M. (2014). A review of the mechanisms and components that determine the transmission efficiency of tomato yellow leaf curl virus (Geminiviridae; Begomovirus) by its whitefly vector. Virus Research, 186, 47–54.CrossRefGoogle Scholar
  16. Ghanim, M., Sobol, I., Ghanim, M., & Czosnek, H. (2007). Horizontal transmission of begomoviruses between Bemisia tabaci. Arthropod-Plant Interactions, 1, 195–204.CrossRefGoogle Scholar
  17. Götz, M., & Winter, S. (2016). Diversity of Bemisia tabaci in Thailand and Vietnam and indications of species replacement. Journal of Asia-Pacific Entomology, 19, 537–543.CrossRefGoogle Scholar
  18. Green, S. K., Tsai, W. S., Shih, S. L., Rezaian, A., & Duangsong, U. (2003). Molecular characterization of a new begomovirus associated with tomato yellow leaf curl and eggplant yellow mosaic diseases in Thailand. Plant Disease, 87(4), 446.CrossRefGoogle Scholar
  19. Hanssen, I. M., Lapidot, M., & Thomma, B. P. H. J. (2010). Emerging viral diseases of tomato crops. Molecular plant-microbe interaction, 23(5), 539–548.CrossRefGoogle Scholar
  20. Iida, H., Kitamura, T., & Honda, K.-I. (2009). Comparison of egg-hatching rate, survival rate and development time of the immature stage between B- and Q-biotypes of Bemisia tabaci (Gennadius) (Homoptera: Aleyrodidae) on various agricultural crops. Applied Entomology and Zoology, 44(2), 267–273.CrossRefGoogle Scholar
  21. Ito, T., Sharma, P., Kittipakorn, K., & Ikegami, M. (2008). Complete nucleotide sequence of a new isolate of tomato leaf curl New Delhi virus infecting cucumber, bottle gourd and muskmelon in Thailand. Archives of Virology, 153(3), 611–613.CrossRefGoogle Scholar
  22. Jiao, X., Xie, W., Wang, S., Wu, Q., Zhou, L., Pan, H., Liu, B., & Zhang, Y. (2012). Host preference and nymph performance of B and Q putative species of Bemisia tabaci on three host plants. Journal of Pest Science, 85, 423–430.CrossRefGoogle Scholar
  23. Kenyon, L., Tsai, W.-S., Shih, S.-L., & Lee, L.-M. (2014). Emergence and diversity of begomoviruses infecting solanaceous crops in east and Southeast Asia. Virus Research, 186, 104–113.CrossRefGoogle Scholar
  24. Kil, E.-J., Byun, H.-S., Kim, S., Kim, J., Park, J., Cho, S., Yang, D.-C., Lee, K.-Y., Choi, H.-S., Kim, J.-K., & Lee, S. (2014). Sweet pepper confirmed as a reservoir host for tomato yellow leaf curl virus by both agro-inoculation and whitefly-mediated inoculation. Archives of Virology, 159, 2387–2395.CrossRefGoogle Scholar
  25. Knierim, D., & Maiss, E. (2007). Application of Phi29 DNA polymerase in identification and full-length clone inoculation of Tomato yellow leaf curlThailand virus and Tobacco leaf curlThailand virus. Archives of Virology, 152, 941–954.CrossRefGoogle Scholar
  26. Kumar, S., Stecher, G., & Tamura, K. (2016). MEGA7: Molecular evolutionary genetics analysis version 7.0 for. Bigger Datasets, Molecular Biology and Evolution, 33(7), 1870–1874.CrossRefGoogle Scholar
  27. Lapjit, F. P. (2014). Problems and needs of Sida tomato production of growers in Nakhonratchasima province. Khon Kaen Agriculture Journal, 42(3), 894–898.Google Scholar
  28. Li, M., Hu, J., Xu, F.-C., & Liu, S.-S. (2010a). Transmission of Tomato Yellow Leaf Curl Virus by two invasive biotypes and a Chinese indigenous biotype of the whitefly Bemisia tabaci. International Journal of Pest Management, 56(3), 275–280.CrossRefGoogle Scholar
  29. Li, M., Liu, J., & Liu, S.-S. (2010b). Tomato yellow leaf curl virus infection of tomato does not affect the performance of the Q and ZHJ2 biotypes of the viral vector Bemisia tabaci. Insect Sci., 18(1), 40–49.CrossRefGoogle Scholar
  30. Morilla, G., Janssen, D., García-Andrés, S., Moriones, E., Cuadrado, I. M., & Bejarano, E. R. (2005). Pepper (Capsicum annuum) is a dead-end host for Tomato yellow leaf curl virus. Phytopathology, 95, 1089–1097.CrossRefGoogle Scholar
  31. Nikhil, R. K., Chang, J.-C., Manikanda Boopathi, N., & Srinivasan, R. (2017). Phylogeographical structure in mitochondrial DNA of whitefly, Bemisia tabaci Gennadius (Hemiptera: Aleyrodidae) in southern India and Southeast Asia. Mitochondrial DNA Part A, 28(5), 621–631.CrossRefGoogle Scholar
  32. Ning, W., Shi, X., Liu, B., Pan, H., Wei, W., Zeng, Y., Sun, X., Xie, W., , Wang, S., Wu, Q., Cheng, J., Peng, Z., & Zhang, Y. (2015). Transmission of Tomato Yellow Leaf Curl Virus by Bemisia tabaci as affected by whitefly sex and biotype. Scientific Reports, 5, 10744.CrossRefGoogle Scholar
  33. OAE (2016). Office of Agriculture Economics. Tomato production in Thailand in 2013–2015. Vegetable product. http://www.oae.go.th/ewtadmin/ewt/oae_web/download/prcai/vegetable/tomato.pdf. Accessed 23 December 2016.
  34. Palangphukhieo, W., Patchanida, N., & Petcharat, T. (2012). Situation of pepper and tomato diseases in seed production fields in northeast of Thailand and Parksong district, Lao’s PDR. Khon Kaen Agriculture Journal, 40 supplement, 522–531.Google Scholar
  35. Polston, J. E., Cohen, L., Sherwood, T. A., Ben-Joseph, R., & Lapidot, M. (2006). Capsicum species: Symptomless hosts and reservoirs of tomato yellow leaf curl virus. Phytopathology, 96, 447–452.CrossRefGoogle Scholar
  36. Rotbi, M., De Castro, A. P., Diez, M. J., & Elmtili, N. (2014). Identification and distribution of tomato yellow leaf curl virus TYLCV and tomato yellow leaf curl Sardinia virus TYLCSV infection vegetable crops in Morocco. African Journal of Biotechnology, 13(13), 1476–1483.CrossRefGoogle Scholar
  37. Salati, R., Shorey, M., Briggs, A., Calderon, J., Rojas, M. R., Chen, L. F., Gilbertson, R. L., & Palmieri, M. (2010). First report of Tomato yellow leaf curl virus infecting tomato, tomatillo, and peppers in Guatemala. Plant Disease, 94(4), 482.CrossRefGoogle Scholar
  38. Samretwanich, K., Chiemsombat, P., Kittipakorn, K., & Ikegami, M. (2000a). Yellow leaf disease of cantaloupe and wax gourd from Thailand. Plant Disease, 84, 200.CrossRefGoogle Scholar
  39. Samretwanich, K., Chiemsombat, P., Kittipakorn, K., & Ikegami, M. (2000b). Tomato leaf curl Geminivirus associated with cucumber yellow leaf disease in Thailand. Journal of Phytopathology, 148, 615–617.Google Scholar
  40. Sawangjit, S. (2009). The complte nucleotide sequence of Squash leaf curl China virus-[wax gourd] and its phylogenetic relationship to other geminiviruses. ScienceAsia, 35, 131–136.CrossRefGoogle Scholar
  41. Sawangjit, S., Chatchawankanphanich, O., Chiemsombat, P., Attathom, T., Dale, J., & Attathom, S. (2005). Molecular characterization of tomato infecting begomoviruses in Thailand. Virus Research, 109, 1–8.CrossRefGoogle Scholar
  42. Sharma, M., & Budha, P. B. (2015). Host preference vegetables of tobacco whitefly Bemisia tabaci (Gennadius, 1889) in Nepal. Journal of Institute of Science and Technology, 20(1), 133–137.CrossRefGoogle Scholar
  43. Shih, S. L., Tsai, W. S., Lee, L. M., Wang, J. T., Green, S. K., & Kenyon, L. (2010). First report of tomato yellow leaf curl Thailand virus associated with pepper leaf curl disease in Taiwan. Plant Disease, 94, 637.CrossRefGoogle Scholar
  44. Shih, S.-L., Tsai, W.-S., Lee, L.-M., & Kenyon, L. (2013). Molecular characterization of Begomoviruses infecting Sauropus androgynus in Thailand. Journal of Phytopathology, 161(2), 78–85.CrossRefGoogle Scholar
  45. Simon, C., Frati, F., Beckenbach, A., Crespi, B., Lui, H., & Flook, P. (1994). Evolution, weighting, and phylogenetic utility of mitochondrial gene sequences and a compilation of conserved polymerase chain reaction “primers”. Annals of the Entomological Society of America, 87, 651–701.CrossRefGoogle Scholar
  46. Sinisterra, X. H., McKenzie, C. L., Hunter, W. B., Powell, C. A., & Shatters, R. G. (2005). Differential transcriptional activity of plantpathogenic begomoviruses in their whitefly vector (Bemisia tabaci, Gennadius: Hemiptera Aleyrodidae). Journal of General Virology, 86, 1525–1532.CrossRefGoogle Scholar
  47. Srinivasan, R., Hsu, Y.-C., Kadirvel, P., & Lin, M.-Y. (2013). Analysis of Bemisia tabaci (Hemiptera: Aleyrodidae) species complex in Java, Indonesia based on mitochondrial cytochrome oxidase I sequences. The Philippine Agricultural Scientist, 96(3), 290–295.Google Scholar
  48. Su, Q., Pan, H., Liu, B., Chu, D., Xie, W., Wu, Q., Wang, S., Xu, B., & Zhang, Y. (2013). Insect symbiont facilitates vector acquisition, retention, and transmission of plant virus. Scientific Reports, 3.  https://doi.org/10.1038/srep01367.
  49. Sun, D.-B., Liu, Y.-Q., Qin, L., Xu, J., Li, F.-F., & Liu, S.-S. (2013). Competitive displacement between two invasive whiteflies: Insecticide application and host plant effects. Bulletin of Entomological Research, 103(3), 344–353.CrossRefGoogle Scholar
  50. Tantiwanich, Y., & Chiemsombat, P. (2002). Gene cloning and genome structure of geminivirus causing yellow leaf curl disease of angled luffa. Thai Phytopathol, 16, 1–14.Google Scholar
  51. Thanapase, V., Poolpol, P., Sutabutra, T., & Attathom, S. (1983). Causal agent and some important characteristics of Tomato yellow leaf curl disease. Kasetsart Journal: Natural Science, 17, 65–73.Google Scholar
  52. Tsai, W. S., Shih, S. L., Green, S., Rauf, A., Hidayat, S., & Jan, F. J. (2006). Molecular characterization of Pepper yellow leaf curl Indonesia virus in leaf curl and yellowing diseased tomato and pepper in Indonesia. Plant Disease, 90(2), 247.CrossRefGoogle Scholar
  53. Tsai, W. S., Shih, S. L., Venkatesan, S. G., Aquino, M. U., Green, S. K., Keyon, L., & Jan, F. J. (2011). Distribution and genetic diversity of begomoviruses in fecting tomato and pepper plants in the Philippines. The Annals of Applied Biology, 158(3), 275–287.CrossRefGoogle Scholar
  54. Tsai, W. S., Shih, S. L., Lee, L. M., Wang, J. T., Duangsong, U., & Kenyon, L. (2012). First report of Bhendi yellow vein mosaic virus associated with yellow vein mosaic of okra (Abelmoschus esculentus) in Thailand. Plant Disease, 97(2), 291.CrossRefGoogle Scholar
  55. Weng, V., Tsai, W. S., Kenyon, L., & Tsai, C. W. (2015). Different transmission efficiencies may drive displacement of tomato begomoviruses in the fields in Taiwan. Annals of Applied Biology, 166, 321–330.CrossRefGoogle Scholar
  56. Xu, J., Lin, K. K., & Liu, S. S. (2011). Performance on different host plants of an alien and an indigenous Bemisia tabaci from China. Journal of Applied Entomology, 135, 771–779.CrossRefGoogle Scholar
  57. Zang, L.-S., Chen, W.-Q., & Liu, S.-S. (2006). Comparison of performance on different host plants between the B biotype and a non-B biotype of Bemisia tabacifrom Zhejiang, China. Entomologia Experimentalis et Applicata, 121, 221–227.CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.KasetsartUniversityNakhon PathomThailand
  2. 2.World Vegetable Center, East andSoutheast Asia, Research and Training StationKasetsart UniversityNakhon PathomThailand
  3. 3.World Vegetable CenterTainanTaiwan

Personalised recommendations