, Volume 47, Issue 1, pp 55–66 | Cite as

Resistance monitoring for conventional and new chemistry insecticides on Bemisia tabaci genetic group Asia-I in major vegetable crops from India

  • Debashis RoyEmail author
  • Tridip Bhattacharjee
  • Abhisek Biswas
  • Argha Ghosh
  • Sukamal Sarkar
  • Dibyendu Mondal
  • Pijush Kanti Sarkar


Whitefly (Bemisia tabaci Gennadius) is a devastating pest of vegetables, cotton, and many other agricultural and horticultural crops worldwide. Since control of B. tabaci on vegetable crops solely depends on the use of chemical insecticides in India; monitoring the insecticide resistance of B. tabaci populations would be very much essential for achieving successful control and for managing the resistance development. Hence, the aim of the present study was to examine the resistance in different field strains of B. tabaci to traditional organophosphates and new chemical insecticides in India. The resistance ratios were recorded in the range of 30.67–131.48 fold for acephate, 29.17–83.67 fold for triazophos, 0.38–2.51 fold for indoxacarb, 4.55–34.52 fold for dinotefuran, 6.26–27.56 fold for tolfenpyrad, 7.87–31.89 fold for spiromesifen, 1.61–30.08 fold for pyriproxyfen, and 3.09–45.92 fold for flonicamid in comparison to that of the susceptible strain in the laboratory. Resistance levels of B. tabaci populations against the tested insecticides were significantly variable among localities. The present data will be helpful for the selection of proper insecticides on vegetable crops in the field for successful management of B. tabaci in near future.


Tobacco whitefly Insecticide resistance Dinotefuran Tolfenpyrad Flonicamid Vegetables 



Authors would like to thank laboratory experts of BCKV for insect rearing and field survey assistance. Moreover, special thanks are due to the support by the Director of Research (BCKV) for providing necessary infrastructures and M/S. Dow AgroSciences Pvt. Ltd., Mumbai, India for laboratory funding. Additionally authors are also grateful to Dr. Saikat Gantait (Bidhan Chandra Krishi Viswavidyalaya) for final editing of the manuscript.

Compliance with ethical standards

Conflict of interest

The authors declare no conflict of interest.

Human and animal studies

This article does not contain any studies with human or other animal subjects.


  1. Abbott, W. S. (1925). A method of computing the effectiveness of an insecticide. Journal of Economic Entomology, 18, 265–267.CrossRefGoogle Scholar
  2. Ahmad, M., & Arif, M. I. (2009). Resistance of Pakistani field populations of spotted bollworm Earias vittella (Lepidoptera: Noctuidae) to pyrethroid, organophosphorus and new chemical insecticides. Pest Management Science, 65, 433–439.CrossRefGoogle Scholar
  3. Ahmad, M., Sayyed, A. H., Saleem, M. A., & Ahmad, M. (2008). Evidence for field evolved resistance to newer insecticides in Spodoptera litura (Lepidoptera: Noctuidae) from Pakistan. Crop Protection, 27, 1367–1372.CrossRefGoogle Scholar
  4. Ahmad, M., Arif, M. I., & Naveed, M. (2010). Dynamics of resistance to organophosphate and carbamate insecticides in the cotton whitefly Bemisia tabaci (Hemiptera: Aleyrodidae) from Pakistan. Journal of Pest Science, 83, 409–420.CrossRefGoogle Scholar
  5. Ahmad, K. A., Dwivedi, H. S., & Dwivedi, P. (2015). Pesticide scenario of India with particular reference to Madhya Pradesh: A review. New York Science Journal, 8, 69–76.Google Scholar
  6. Aly, A. A. (2014). Toxicity and persistence of selected neonicotinoid insecticides on cowpea aphid, Aphis craccivora Koch (Homoptera: Aphididae). Archives of Phytopathology and Plant Protection, 47, 366–376.CrossRefGoogle Scholar
  7. Ameta, O. P., Sharma, U. S., & Padiwal, N. K. (2010). Bio-efficacy of spiromesifen 240 SC against mite, Tetranychus spp. and whitefly, Bemisia tabaci in tomato. Pestology, 34, 42–47.Google Scholar
  8. Bacci, L., Crespo, A. L. B., Galvan, T. L., Pereira, E. J., Picanco, M. C., Silva, G. A., & Chediak, M. (2007). Toxicity of insecticides to the sweetpotato whitefly (Hemiptera: Aleyrodidae) and its natural enemies. Pest Management Science, 63, 699–706.CrossRefGoogle Scholar
  9. Bajya, D. R., Ranjith, M., & Lakharan, M. C. (2015). Evaluation of combination product (Indoxacarb 5% + Fipronil 5% SC) against jassid, Amrasca biguttula biguttula and whitefly, Bemisia tabaci in cotton. Indian Journal of Agricultural Sciences, 85, 1356–1359.Google Scholar
  10. Banerjee, I., Tripathi, S., Roy, A. S., & Sengupta, P. (2014). Pesticide use pattern among farmers in a rural district of West Bengal, India. Journal of Natural Science, Biology and Medicine, 5, 313–316.CrossRefGoogle Scholar
  11. Banks, G. K., Colvin, J., Chowda Reddy, R. V., Maruthi, M. N., Muniyappa, V., Venkatesh, H. M., Kumar, M. K., Padmaja, A. S., Beitia, F. J., & Seal, S. E. (2001). First report of the Bemisia tabaci B biotype in India and an associated tomato leaf curl virus disease epidemic. Plant Disease, 85, 231.CrossRefGoogle Scholar
  12. Basit, M., Sayyed, A. H., Saleem, M. A., & Saeed, S. (2011). Cross-resistance, inheritance and stability of resistance to acetamiprid in cotton whitefly, Bemisia tabaci Genn (Hemiptera: Aleyrodidae). Crop Protection, 30, 705–712.CrossRefGoogle Scholar
  13. Basit, M., Saeed, S., Saleem, M. A., Denholm, I., & Shah, M. (2013). Detection of resistance, cross-resistance, and stability of resistance to new chemistry insecticides in Bemisia tabaci (Homoptera: Aleyrodidae). Journal of Economic Entomology, 106, 1414–1422.CrossRefGoogle Scholar
  14. De Barro, P. J., Liu, S. S., Boykin, L. M., & Dinsdale, A. B. (2011). Bemisia tabaci: A statement of species status. Annual Review of Entomology, 56, 1–19.CrossRefGoogle Scholar
  15. Denholm, I., Cahill, M., Dennehy, T. J., & Horowitz, A. R. (1998). Challenges with managing insecticide resistance in agricultural pests, exemplified by the whitefly Bemisia tabaci. Philosophical Transactions of Royal Society of London Series B-Biological Science, 353, 1757–1767.CrossRefGoogle Scholar
  16. Dinsdale, A., Cook, L., Riginos, C., Buckley, Y. M., & Barro, P. D. (2010). Refined global analysis of Bemisia tabaci (Hemiptera: Sternorrhyncha: Aleyrodoidea: Aleyrodidae) mitochondrial cytochrome oxidase I to identify species level genetic boundaries. Annals of Entomological Society of America, 103, 196–208.CrossRefGoogle Scholar
  17. Dittrich, V., Hassan, S. O., & Ernst, G. H. (1986). Development of a new primary pest of cotton in the Sudan: Bemisia tabaci, the whitefly. Agriculture, Ecosystem and Environment, 17, 137–142.CrossRefGoogle Scholar
  18. El-Latif, A. O. A., & Subrahmanyam, B. (2010). Pyrethroid resistance and esterase activity in three strains of the cotton bollworm, Helicoverpa armigera (Hübner). Pesticide Biochemistry and Physiology, 96, 155–159.CrossRefGoogle Scholar
  19. Erdogan, C., Moores, G. D., Gurkan, M. O., Gorman, K. J., & Denholm, I. (2008). Insecticide resistance and biotype status of populations of the tobacco whitefly Bemisia tabaci (Hemiptera: Aleyrodidae) from Turkey. Crop Protection, 27, 600–605.CrossRefGoogle Scholar
  20. Farnandez, S., Gravalos, C., Haro, P. J., Cifuentes, D., & Bielza, P. (2009). Insecticide resistance status of Bemisia tabaci Q- biotype in south eastern Spain. Pest Management Science, 65, 885–891.CrossRefGoogle Scholar
  21. Finney, D. (1971). A statistical treatment of the sigmoid response curve. Probit analysis, third ed (p. 333). London: Cambridge University Press.Google Scholar
  22. Gorman, K., Slater, R., Blande, J. D., Clarke, A., Wren, J., McCaffery, A., & Denholm, I. (2010). Cross-resistance relationships between neonicotinoids and pymetrozine in Bemisia tabaci (Hemiptera: Aleyrodidae). Pest Management Science, 66, 1186–1190.CrossRefGoogle Scholar
  23. Guthrie, F., Denholm, I., Devine, G.J., & Nauen, R. (2003). Biological evaluation of spiromesifen against Bemisia tabaci and an assessment of resistance risks: Proceedings of the British Crop Protection Conference: Pests and Diseases. British Crop Protection Council, Farnham. pp. 795–800.Google Scholar
  24. Gutierrez, A. P., Ponti, L., Herren, H. R., Baumgärtner, J., & Kenmore, P. E. (2015). Deconstructing Indian cotton: Weather, yields, and suicides. Environmental Sciences Europe, 27, 1–17.CrossRefGoogle Scholar
  25. Hasan, W., Chhibber, R. C., & Singh, C. P. (2016). Effect of indoxacarb against tomato fruit borer (Helicoverpa armigera hub.) and phytotoxicity to tomato plants. Advances in Plants and Agriculture Research, 3, 00093.CrossRefGoogle Scholar
  26. Hussain, D., Saleem, H. M., Saleem, M., & Abbas, M. (2014). Monitoring of insecticides resistance in field populations of Helicoverpa armigera (hub.) (Lepidoptera: Noctuidae). Journal of Entomology and Zoology Studies, 2, 1–8.Google Scholar
  27. Jadhav, D.R., Kranthi, K.R., Tawar, K.B., & Russel, D.A. (1999). Insecticide resistance scenario on cotton pests in India. International crops Res. Institute for the semi-arid Tropics Nagpur, Maharashtra India: In the proceedings ICAC-CCRI. Regional consultation Insecticide Resistance Management in cotton; 1999 June 28-July; Multan, Pakistan, p. 103–117.Google Scholar
  28. Jeyanthi, H., & Kombairaju, S. (2005). Pesticide use in vegetable crops: Frequency, intensity and determinant factors. Agricultural Economics Research Review, 18, 209–221.Google Scholar
  29. Jha, S. K., & Kumar, M. (2017). Relative efficacy of different insecticides against whitefly, Bemisia tabaci on tomato under field condition. Journal of Entomology and Zoology Studies, 5, 728–732.Google Scholar
  30. Khan, H. A. A., Shad, S. A., & Akram, W. (2013). Resistance to new chemical insecticides in the house fly, Musca domestica L., from dairies in Punjab, Pakistan. Parasitology Research, 112, 2049–2054.CrossRefGoogle Scholar
  31. Kodandaram, M.H., Saha, S., Rai, A.B., & Naik, P.S. (2013). Compendium on pesticide use in vegetables. IIVR Extension Bulletin No. 50, IIVR, Varanasi, pp. 133.Google Scholar
  32. Kodandaram, M. H., Kumar, Y. B., Rai, A. B., & Singh, B. (2016). An overview of insecticides and acaricides with new chemistries for the management of sucking pests in vegetable crops. Vegetable Science, 43, 1–12.Google Scholar
  33. Kontsedalov, S., Abu-Moch, F., Lebedev, G., Czosnek, H., Horowitz, R., & Ghanim, M. (2012). Bemisia tabaci biotype dynamics and resistance to insecticides in Israel during the years 2008-2010. Journal of Integrative Agriculture, 11, 312–320.CrossRefGoogle Scholar
  34. Kranthi, K. R., Jadhav, D. R., Wanjari, R. R., Ali, S., & Russell, D. A. (2001). Carbamate and organophosphate resistance in cotton pests in India, 1995 to 1999. Bulletin of Entomological Research, 91, 37–46.Google Scholar
  35. Kranthi, K. R., Jadhav, D. R., Kranthi, S., Wanjari, R. R., Ali, S., & Russell, D. A. (2002). Insecticide resistance in five major insect pests of cotton in India. Crop Protection, 21, 449–460.CrossRefGoogle Scholar
  36. Kumar, S., Sharma, A. K., Rawat, S. S., Jain, D. K., & Ghosh, S. (2013). Use of pesticides in agriculture and livestock animals and its impact on environment of India. Asian Journal of Environmental Science, 8, 51–57.Google Scholar
  37. Kumar, A., Verma, R. B., Kumar, R., Sinha, S. K., & Kumar, R. (2017). Yellow vein mosaic disease of okra: A recent management technique. International Journal of Plant and Soil Science, 19, 1–8.CrossRefGoogle Scholar
  38. Luo, C., Jones, C. M., Devine, G., Zhang, F., Denholm, I., & Gorman, K. (2010). Insecticide resistance in Bemisia tabaci biotype Q (Hemiptera: Aleyrodidae) from China. Crop Protection, 29, 429–434.CrossRefGoogle Scholar
  39. Ma, W., Li, X., Dennehy, T. J., Lei, C., Wang, M., Degain, B. A., & Nichols, R. L. (2010). Pyriproxyfen resistance of Bemisia tabaci (Homoptera: Aleyrodidae) biotype B: Metabolic mechanism. Journal of Economic Entomology, 103, 158–165.CrossRefGoogle Scholar
  40. MahaLakshmi, M. S., Sreekanth, M., Adinarayana, M., & Rao, Y. K. (2015). Efficacy of some novel insecticide molecules against incidence of whiteflies (Bemisia tabaci Genn.) and occurrence of yellow mosaic virus (YMV) disease in urdbean. International Journal of Pure and Applied Bioscience, 3, 101–106.Google Scholar
  41. Mallah, G. H. (2007). Review of the current status of insecticide resistance in insect pests of cotton and their management. Pakistan Journal of Botany, 39, 2699–2703.Google Scholar
  42. Martin, J. H. (1987). An identification guide to common whitefly pest species of the world (Homoptera: Aleyrodidae). International Journal of Pest Management, 33, 298–322.Google Scholar
  43. Mate, C. J., Mukherjee, I., & Das, S. K. (2015). Persistence of spiromesifen in soil: Influence of moisture, light, pH and organic amendment. Environtal Monitoring and Assessment, 187, 7.CrossRefGoogle Scholar
  44. Memmi, B. K. (2010). Mortality and knockdown effects of imidacloprid and methomyl in house fly (Musca domestica L., Diptera: Muscidae) populations. Journal of Vector Ecology, 35, 144–148.CrossRefGoogle Scholar
  45. Nauen, R., Wolfel, K., Lueke, B., Myridakis, A., Tsakireli, D., Roditakis, E., Tsagkarakou, A., Stephanou, E., & Vontas, J. (2015). Development of a lateral flow test to detect metabolic resistance in Bemisia tabaci mediated by CYP6CM1, a cytochrome P450 with broad spectrum catalytic efficiency. Pesticide Biochemistry and Physiology, 121, 3–11.CrossRefGoogle Scholar
  46. Navas-Castillo, J., Fiallo-Olive, E., & Sanchez-Campos, S. (2011). Emerging virus diseases transmitted by whiteflies. Annual Review of Phytopathology, 49, 219–248.CrossRefGoogle Scholar
  47. Naveen, N. C., Kumar, D., Alam, W., Chaubey, R., Subramanian, S., & Rajagopal, R. (2012). A model study integrating time dependent mortality in evaluating insecticides against Bemisia tabaci (Hemiptera: Aleyrodidae). Indian Journal of Entomology, 74, 384–387.Google Scholar
  48. Naveen, N. C., Chaubey, R., Kumar, D., Rebijith, K. B., Rajagopal, R., Subrahmanyam, B., & Subramanian, S. (2017). Insecticide resistance status in the whitefly, Bemisia tabaci genetic groups Asia-I, Asia-II-1 and Asia-II-7 on the Indian subcontinent. Scientific Reports, 7, 40634.CrossRefGoogle Scholar
  49. Neeraj, Chittora, A., Bisht, V., & Johar, V. (2017). Marketing and production of fruits and vegetables in India. International Journal of Current Microbiology and Applied Science, 6, 2896–2907.Google Scholar
  50. Pappas, M. L., Migkou, F., & Broufas, G. D. (2013). Incidence of resistance to neonicotinoid insecticides in greenhouse populations of the whitefly, Trialeurodes vaporariorum (Hemiptera: Aleyrodidae) from Greece. Applied Entomology and Zoology, 48, 373–378.CrossRefGoogle Scholar
  51. Peshin, R., & Zhang, W. (2014). Integrated pest management and pesticide use in Integrated Pest Management, ed. by Pimentel, D., Peshin, R., Springer, pp. 1–46.Google Scholar
  52. Prabhaker, N., Castle, S. J., Buckelew, L., & Toscano, N. C. (2008). Baseline susceptibility of Bemisia tabaci B biotype (Hemiptera: Aleyrodidae) populations from California and Arizona to spiromesifen. Journal of Economic Entomology, 101, 174–181.CrossRefGoogle Scholar
  53. Raghavendra, K., Velamuri, P. S., Verma, V., Elamathi, N., Barik, T. K., Bhatt, R. M., & Dash, A. P. (2017). Temporo-spatial distribution of insecticide-resistance in Indian malaria vectors in the last quarter-century: Need for regular resistance monitoring and management. Journal of Vector Borne Disease, 54, 111–130.CrossRefGoogle Scholar
  54. Rai, A. B., Halder, J., & Kodandaram, M. H. (2014). Emerging insect pest problems in vegetable crops and their management in India: An appraisal. Pest Management in Horticulture Ecosystem, 20, 113–122.Google Scholar
  55. Raj, M. F., Solanki, P. P., Singh, S., Vaghela, K. M., Shah, P. G., Patel, A. R., & Diwan, K. D. (2012). Dissipation of spiromesifen in/ on okra under middle Gujarat condition. Pesticide Research Journal, 24, 25–27.Google Scholar
  56. Reitz, S. R. (2007). Invasion of the whiteflies. Science, 318, 1733–1734.CrossRefGoogle Scholar
  57. Robertson, J., & Preisler, H. (1992). Pesticide bioassays with arthropods. Boca Raton: CRC.Google Scholar
  58. Roditakis, E., Fytrou, N., Staurakaki, M., Vontas, J., & Tsagkarakou, A. (2014). Activity of flonicamid on the sweet potato whitely Bemisia tabaci (Homoptera: Aleyrodidae) and its natural enemies. Pest Management Science, 70, 1460–1467.CrossRefGoogle Scholar
  59. Saha, B., Saha, D., Biswas, K. K., & Saha, A. (2014). Distribution and molecular characterization of begomoviruses infecting tomato in sub-Himalayan Tarai region of West Bengal and Brahmaputra valley of Assam in Northeast India. Indian Phytopathology, 67, 92–96.Google Scholar
  60. Saimandir, J., & Gopal, M. (2012). Evaluation of synthetic and natural insecticides for the management of insect pest control of eggplant (Solanum melongena L.) and pesticide residue dissipation pattern. American Journal of Plant Science, 3, 214–227.CrossRefGoogle Scholar
  61. Sardana, H.R., Bhat, M.N., Ahuja, D.B., & Sehgal, M. (2017). Validated integrated pest management strategies for major vegetable crops. Technical bulletin no. 42, ICAR-National Research Centre for Integrated Pest Management, New Delhi, pp. 38.Google Scholar
  62. Sathyan, T., Murugesan, N., Elanchezhyan, K., Raj, A. S., & Ravi, G. (2016). Efficacy of synthetic insecticides against sucking insect pests in cotton, Gossypium hirsutum L. International Journal of Entomological Research, 1, 16–21.Google Scholar
  63. Sayyed, A. H., Ahmad, M., & Saleem, M. A. (2008). Cross-resistance and genetics of resistance to indoxacarb in Spodoptera litura (Lepidoptera: Noctuidae). Journal of Economic Entomology, 101, 472–479.CrossRefGoogle Scholar
  64. Sethi, A., & Dilawari, V. K. (2008). Spectrum of insecticide resistance in whitefly from upland cotton in Indian subcontinent. Journal of Entomology, 5, 138–147.CrossRefGoogle Scholar
  65. Shono, T., Zhang, L., & Scott, G. (2004). Indoxacarb resistance in the house fly, Musca domestica. Pesticide Biochemistry and Physiology, 80, 106–112.CrossRefGoogle Scholar
  66. Singh, R., & Jaglan, R. S. (2005). Development and management of insecticide resistance in cotton whitefly and leafhopper - a review. Agricultural Review, 26, 229–234.Google Scholar
  67. Singh, S. S., Rai, A. B., Rai, M. K., & Kamal, S. (2009). Status, constrains and strategies of integrated pest management in vegetable crops. Progressive Horticulture, 41, 46–53.Google Scholar
  68. Srinivas, R., Udikeri, S. S., Jayalakshmi, S. K., & Sreeramulu, K. (2004). Identification of factors responsible for insecticide resistance in Helicoverpa armigera. Comparative Biochemistry and Physiology Part C Toxicology and Pharmacology, 137, 261–269.CrossRefGoogle Scholar
  69. Sujayanand, G. K., Sharma, R. K., & Shankarganesh, K. (2013). Efficacy of newer insecticides against leaf hopper and whitefly infesting brinjal and its effect on coccinellids. Pesticide Research Journal, 25, 6–11.Google Scholar
  70. Tabashnik, B. E. (1989). Managing resistance with multiple pesticide tactics: Theory, evidence, and recommendations. Journal of Economic Entomology, 82, 1263–1269.CrossRefGoogle Scholar
  71. Vanitha, S.M., Chaurasia, S.N.S., Singh, P.M., & Naik, P.S. (2013). Vegetable statistics. Technical bulletin No. 51, IIVR, Varanasi, Uttar Pradesh, India, pp. 250.Google Scholar
  72. Wang, Z., Yan, H., Yang, Y., & Wu, Y. (2010). Biotype and insecticide resistance status of the whitefly Bemisia tabaci from China. Pest Management Science, 66, 1360–1366.CrossRefGoogle Scholar
  73. Wang, S., Zhang, Y., Yang, X., Xie, W., & Wu, Q. (2017). Resistance monitoring for eight insecticides on the sweetpotato whitefly (Hemiptera: Aleyrodidae) in China. Journal of Economic Entomology, 110, 660–666.CrossRefGoogle Scholar
  74. Xie, W., Liu, Y., Wang, S. L., Wu, Q. J., Pan, H. P., Yang, X., Guo, L. T., & Zhang, Y. J. (2014). Sensitivity of Bemisia tabaci (Hemiptera: Aleyrodidae) to several new insecticides in China: Effects of insecticide type and whitefly species, strain, and stage. Journal of Insect Science, 14, 261.Google Scholar
  75. Yadav, Y., Maurya, P. K., Devi, A. P., Jamir, I., Bhattacharjee, T., Banerjee, S., Dutta, S., Debnath, D., Mandal, A. K., Dutta, S., & Chattopadhyay, A. (2018). Enation leaf curl virus (ELCV): A real threat in major okra production belts of India: A review. Journal of Pharmacognosy and Phytochemistry, 7, 3795–3802.Google Scholar
  76. Yukselbaba, U., & Gocmen, H. (2016). Determination of the resistance development potential to spiromesifen and the enzyme activities of the B and Q biotypes of cotton whitefly Bemisia tabaci (Genn.) (Hemiptera: Aleyrodidae). Fresenius Environmental Bulletin, 25, 2461–2465.Google Scholar
  77. Zhu, F., Lavine, L., O’Neal, S., Lavine, M., Foss, C., & Walsh, D. (2016). Insecticide resistance and management strategies in urban ecosystems. Insects, 7, 2–26.CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.Department of Agricultural EntomologyBidhan Chandra Krishi ViswavidyalayaNadiaIndia
  2. 2.Department of HorticultureCollege of AgricultureLembucherraIndia
  3. 3.Department of Agricultural and Environmental Sciences (DiSAA)University of MilanMilanItaly
  4. 4.Department of Agro-meteorology and PhysicsBidhan Chandra Krishi ViswavidyalayaNadiaIndia
  5. 5.Department of AgronomyBidhan Chandra Krishi ViswavidyalayaNadiaIndia

Personalised recommendations