Springer Nature is making Coronavirus research free. View research | View latest news | Sign up for updates

Enhanced thermoelectric performance of AgBi3S5 by antimony doping

  • 8 Accesses


AgBi3S5 is a promising n-type thermoelectric material with low lattice thermal conductivity. In this paper, polycrystalline bulk samples of n-type Ag1−xSbxBi3S5 (x = 0–0.03) were prepared by high-temperature reaction and pressed by spark plasma sintering (SPS). Electrical conductivity of AgBi3S5 is enhanced significantly due to the increased carrier concentration. There is a remarkable enhancement of power factor from ~ 2.1 μW·cm−1·K−2 for undoped AgBi3S5 to ~ 3.3 μW·cm−1·K−2 for Ag0.97Sb0.03Bi3S5. The Sb lone pair electrons, as indicated from density functional theory (DFT) calculation results, contribute to the Fermi energy and enhance the carrier effective mass. In addition, the point defects enhance phonon scattering and decrease the lattice thermal conductivity. Owing to the enhanced power factor and reduced thermal conductivity, the thermoelectric figure of merit (ZT) at 800 K for Ag0.97Sb0.03Bi3S5 reaches 0.53, which is 70% higher than that of the pristine AgBi3S5.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9


  1. [1]

    Tan G, Zhao LD, Kanatzidis MG. Rationally designing high-performance bulk thermoelectric materials. Chem Rev. 2016;116(19):12123.

  2. [2]

    Blackburn JL, Ferguson AJ, Cho C, Grunlan JC. Thermoelectric materials: carbon-nanotube-based thermoelectric materials and devices. Adv Mater. 2018;30(11):1870072.

  3. [3]

    Zeier WG, Zevalkink A, Gibbs ZM, Hautier G, Kanatzidis MG, Snyder GJ. Thinking like a chemist: intuition in thermoelectric materials. Angew Chem Int Ed. 2016;55(24):6826.

  4. [4]

    Slack G, Rowe DM. CRC handbook of thermoelectrics. Boca Raton: CRC; 1995. 12.

  5. [5]

    Luo ZZ, Hao S, Cai S, Bailey TP, Tan G, Luo Y, Spanopoulos I, Uher C, Wolverton C, Dravid VP, Yan Q, Kanatzidis MG. Enhancement of thermoelectric performance for n-type PbS through synergy of gap state and fermi level pinning. J Am Chem Soc. 2019;141(15):6403.

  6. [6]

    Zhao LD, Chang C, Tan G, Kanatzidis MG. SnSe: a remarkable new thermoelectric material. Energy Environ Sci. 2016;9(10):3044.

  7. [7]

    Zhang SS, Yang DF, Shaheen N, Shen XC, Xie DD, Yan YC, Lu X, Zhou XY. Enhanced thermoelectric performance of CoSbS0.85Se0.15 by point defect. Rare Met. 2018;37(4):326.

  8. [8]

    Duan XK, Hu KG, Man DH, Ding SF, Jiang YZ, Guo SC. Preparation and thermoelectric properties of Na and Al dual doped P-type Bi0.5Sb1.5Te3. Chin J Rare Met. 2013;37(5):757.

  9. [9]

    Zhai RS, Wu YH, Zhu TJ, Zhao XB. Thermoelectric performance of p-type zone-melted Se-doped Bi0.5Sb1.5Te3 alloys. Rare Met. 2018;37(4):308.

  10. [10]

    Zhao LD, Lo SH, Zhang Y, Sun H, Tan G, Uher C, Wolverton C, Dravid VP, Kanatzidis MG. Ultralow thermal conductivity and high thermoelectric figure of merit in SnSe crystals. Nature. 2014;508(7496):373.

  11. [11]

    Ma J, Delaire O, May AF, Carlton CE, McGuire MA, VanBebber LH, Abernathy DL, Ehlers G, Hong T, Huq A, Tian W, Keppens VM, Shao-Horn Y, Sales BC. Glass-like phonon scattering from a spontaneous nanostructure in AgSbTe2. Nat Nanotechnol. 2013;8(6):445.

  12. [12]

    Hong M, Chen ZG, Yang L, Liao ZM, Zou YC, Chen YH, Matsumura S, Zou J. Achieving zT > 2 in p-type AgSbTe2−xSex alloys via exploring the extra light valence band and introducing dense stacking faults. Adv Energy Mater. 2018;8(9):1702333.

  13. [13]

    Parker DS, May AF, Singh DJ. Benefits of carrier-pocket anisotropy to thermoelectric performance: the case of p-type AgBiSe2. Phys Rev Appl. 2015;3(6):064003.

  14. [14]

    Guin SN, Srihari V, Biswas K. Promising thermoelectric performance in n-type AgBiSe2: effect of aliovalent anion doping. J Mater Chem A. 2015;3(2):648.

  15. [15]

    Guin SN, Chatterjee A, Negi DS, Dattabc R, Biswas K. High thermoelectric performance in tellurium free p-type AgSbSe2. Energy Environ Sci. 2013;6(9):2603.

  16. [16]

    Bouyrie Y, Candolfi C, Dauscher A, Malaman B, Lenoir B. Exsolution process as a route toward extremely low thermal conductivity in Cu12Sb4−xTexS13 tetrahedrites. Chem Mater. 2015;27(24):8354.

  17. [17]

    Pan L, Bérardan D, Dragoe N. High thermoelectric properties of n-type AgBiSe2. J Am Chem Soc. 2013;135(13):4914.

  18. [18]

    Feng Z, Jia T, Zhang J, Wang Y, Zhang Y. Dual effects of lone-pair electrons and rattling atoms in CuBiS2 on its ultralow thermal conductivity. Phys Rev B. 2017;96(23):235205.

  19. [19]

    Morelli DT, Jovovic V, Heremans JP. Intrinsically minimal thermal conductivity in cubic I–V–VI2 semiconductors. Phys Rev Lett. 2008;101(3):035901.

  20. [20]

    Nielsen MD, Ozolins V, Heremans JP. Lone pair electrons minimize lattice thermal conductivity. Energy Environ Sci. 2013;6(2):570.

  21. [21]

    Tan G, Hao S, Zhao J, Wolverton C, Kanatzidis MG. High thermoelectric performance in electron-doped AgBi3S5 with ultralow thermal conductivity. J Am Chem Soc. 2017;139(18):6467.

  22. [22]

    Kim JH, Chung DY, Bilc D, Loo S, Short J, Mahanti SD, Hogan T, Kanatzidis MG. Crystal growth, thermoelectric properties, and electronic structure of AgBi3S5 and AgSbxBi3−xS5 (x = 0.3). Chem Mater. 2005;17(14):3606.

  23. [23]

    Zhang LJ, Zhang BP, Ge ZH, Han CG, Chen N, Li JF. Synthesis and transport properties of AgBi3S5 ternary sulfide compound. Intermetallics. 2013;36:96.

  24. [24]

    May AF, Singh DJ, Snyder GJ. Influence of band structure on the large thermoelectric performance of lanthanum telluride. Phys Rev B. 2009;79(15):153101.

  25. [25]

    Blaha P, Schwarz K, Madsen GKH, Kvasnicka D, Luitz J. WIEN2K, an augmented planewave + local orbitals program for calculating crystal properties. Wien: Technische Universitat Wien; 2002. 8.

  26. [26]

    Madsen GKH, Blaha P, Schwarz K, Sjöstedt E, Nordström L. Efficient linearization of the augmented plane-wave method. Phys Rev B. 2001;64(19):195134.

  27. [27]

    Koller D, Tran F, Blaha P. Improving the modified Becke–Johnson exchange potential. Phys Rev B. 2012;85(15):155109.

  28. [28]

    Perdew JP, Burke K, Ernzerhof M. Generalized gradient approximation made simple. Phys Rev Lett. 1996;77(18):3865.

  29. [29]

    Goldsmid HJ, Sharp JW. Estimation of the thermal band gap of a semiconductor from seebeck measurements. J Electron Mater. 1999;28(7):869.

  30. [30]

    Lan JL, Liu YC, Zhan B, Lin YH, Zhang BP, Yuan X, Zhang W, Xu W, Nan CW. Enhanced thermoelectric properties of Pb-doped BiCuSeO ceramics. Adv Mater. 2013;25(36):5086.

Download references


This study was financially supported by the National Natural Science Foundation of China (No. 21601021), Shandong Jiaotong University Start-Up Grant (No. BS2018027) and Shandong Younger Scientist Foundation (No. ZR2017BEM030). The authors also acknowledge Prof. X. Liang from Changzhou University for the thermoelectric properties’ measurements.

Author information

Correspondence to Xiao-Cun Liu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 290 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Liu, X., Yang, M. Enhanced thermoelectric performance of AgBi3S5 by antimony doping. Rare Met. (2020).

Download citation


  • Thermoelectric
  • Thermal conductivity
  • Seebeck
  • Density functional theory (DFT)