Rare Metals

, Volume 38, Issue 12, pp 1199–1206 | Cite as

Nickel leaching from low-grade nickel matte using aqueous ferric chloride solution

  • Zhi-Qiang NingEmail author
  • Hong-Wei Xie
  • Qiu-Shi Song
  • Hua-Yi Yin
  • Yu-Chun Zhai


Nickel leaching from low-grade nickel matte (LGNM) using aqueous ferric chloride solution was studied. The influence of factors such as leaching temperature and concentration of ferric chloride on the nickel leaching ratio was investigated. The results show that increasing leaching temperature and concentration of ferric chloride increases the nickel leaching ratio. The overall nickel leaching process follows the unreacted shrinking core model, and the surface chemical reaction is the rate-controlling step. The activation energy and the reaction order of the nickel leaching process, controlled by the surface chemical reaction, were calculated to be 52.96 kJ·mol−1 and 0.5, respectively. Therefore, the kinetics equation for the nickel leaching was found to be 1 − (1 − α)1/3 = 7.18 × 104C0.5exp[− 52,960/(RT)]t.


Nickel matte Ferric chloride Sulfur Kinetics 



This work was financially supported by the National Basic Research Program of China (No. 2014CB6434085).


  1. [1]
    Zhang YB, Yang XL, Tang A. Corrosion behavior of nickel-based 718 alloy determined by in situ electrochemical at different partial pressures of H2S in 25 wt% NaCl solution at 150°C. Rare Met. 2019;38(9):855.CrossRefGoogle Scholar
  2. [2]
    Jiang H, Dong JX, Zhang MC, Zheng L, Yao ZH. Hot corrosion behavior and mechanism of FGH96 P/M superalloy in molten NaCl-Na2SO4 salts. Rare Met. 2019;38(2):173.CrossRefGoogle Scholar
  3. [3]
    Zhou XY, Cheng R, Wei JN, Zhou LL, Wu JQ, Li DS. Structure and magnetic properties of NiZnCo ferrites with different Gd dopings. Chin J Rare Met. 2019;43(5):513.Google Scholar
  4. [4]
    Javanshir S, Mofrad ZH, Azargoon A. Atmospheric pressure leaching of nickel from a low-grade nickel-bearing ore. Physicochem Prob Miner Process. 2018;54(7):890.Google Scholar
  5. [5]
    Kang JX, Feng YL, Li HR, Du ZW, Deng XY, Wang HJ. Electrochemical behavior of ocean polymetallic nodules and low-grade nickel sulfide ore in acidithiobacillus ferrooxidans-coupled bio-leaching. Minerals. 2019;9(2):70.CrossRefGoogle Scholar
  6. [6]
    Xie HW, Qu JK, Ning ZQ, Li B, Song QS, Zhao HJ, Yin HY. Electrochemical co-desulfurization-deoxidation of low-grade nickel-copper matte in molten salts. J Electrochem Soc. 2018;165(11):578.CrossRefGoogle Scholar
  7. [7]
    Barnes SJ, Fiorentini ML, Fardon MC. Platinum group element and nickel sulphide ore tenors of the Mount Keith nickel deposit, Yilgarn Craton, Australia. Miner Deposita. 2012;47(1–2):129.CrossRefGoogle Scholar
  8. [8]
    Cui FH, Mu WN, Wang S, Xu Q, Zhai YC, Luo SG. Controllable phase transformation in extracting valuable metals from chinese low-grade nickel sulphide ore. JOM. 2017;69(10):1925.CrossRefGoogle Scholar
  9. [9]
    Morcali MH, Khajavia LT, Aktas S, Dreisinger DB. Oxidative dissolution of nickel matte in dilute sulfuric acid solutions. Hydrometallurgy. 2019;185(5):257.CrossRefGoogle Scholar
  10. [10]
    Deng T, Liu D. Dissolution of nickel in copper residue generated from nickel matte refining. Rare Met. 2000;19(6):118.Google Scholar
  11. [11]
    Sun YJ, Diao YF, Wang HG, Chen GJ, Zhang M, Guo M. Synthesis, structure and magnetic properties of spinel ferrite (Ni, Cu, Co) Fe2O4 from low nickel matte. Ceram Int. 2017;43(18):16474.CrossRefGoogle Scholar
  12. [12]
    He LH, Zhao ZW, Zhang YX. Synthesis of nickel ferrite precursors from low grade nickel matte. T Nonferrous Metal Soc. 2013;23(8):2422.CrossRefGoogle Scholar
  13. [13]
    Mu WN, Lu XY, Cui FH, Luo SH, Zhai YC. Transformation and leaching kinetics of silicon from low-grade nickel laterite ore by pre-roasting and alkaline leaching process. T Nonferrous Metal Soc. 2018;28(1):169.CrossRefGoogle Scholar
  14. [14]
    Cui FH, Mu WN, Wang S, Xin HX, Xu Q, Zhai YC. A sustainable and selective roasting and water-leaching process to simultaneously extract valuable metals from low-grade Ni-Cu matte. JOM. 2018;70(10):1977.CrossRefGoogle Scholar
  15. [15]
    Kirjavainen V, Heiskanen K. Some factors that affect beneficiation of sulphide nickel-copper ores. Miner Eng. 2007;20(7):629.CrossRefGoogle Scholar
  16. [16]
    Chanturiya V, Makarov V, Forsling W, Makarov D, Vasil’eva T, Trofimenko T, Kuznetsov V. The effect of crystallochemical peculiarities of nickel sulphide minerals on flotation of copper-nickel ore. Int J Miner Process. 2004;74(1–4):289.CrossRefGoogle Scholar
  17. [17]
    Afolabi AS, Muzenda E, Abdulkareem AS, Maluleke V, Ikotun AG. Comparative study of the effect of frothers on the flotation of nickel sulphide ore. Particul Sci Technol. 2012;30(3):287.CrossRefGoogle Scholar
  18. [18]
    Genc AM, Kilickaplan I, Laskowski JS. Effect of pulp rheology on flotation of nickel sulphide ore with fibrous gangue particles. Can Metal Q. 2012;51(4):368.CrossRefGoogle Scholar
  19. [19]
    Mu WN, Cui FH, Huang Z, Zhai YC, Xu Q, Luo SG. Synchronous extraction of nickel and copper from a mixed oxide-sulfide nickel ore in a low-temperature roasting system. J Clean Prod. 2018;177(3):371.CrossRefGoogle Scholar
  20. [20]
    Xi Z, Wang ZX, Li XH, Guo HJ, Yan GC, Wang JX. Improving the desulfurization degree of high-grade nickel matte via a two-step oxidation roasting process. Metall Mater Trans B. 2018;49(4):1834.CrossRefGoogle Scholar
  21. [21]
    Li JF, Wang BL, Xu M, Zhu L, Lin L, Tang PP. Process technology on recovery of sulphur from copper-bearing gold concentrate by using kerosene method. Chem Eng (China). 2009;37(8):75.Google Scholar
  22. [22]
    Zhu Z, Zhang W, Pranolo Y, Cheng CY. Separation and recovery of copper, nickel, cobalt and zinc in chloride solutions by synergistic solvent extraction. Hydrometallurgy. 2012;127(10):1.CrossRefGoogle Scholar
  23. [23]
    Cheng CY, Barnard KR, Zhang WS, Zhu ZW, Pranolo YK. Recovery of nickel, cobalt, copper and zinc in sulphate and chloride solutions using synergistic solvent extraction. J Chem Eng. 2016;24(2):237.CrossRefGoogle Scholar
  24. [24]
    Thangavel S, Dash K, Dhavile M. Determination of traces of As, B, Bi, Ga, Ge, P, Pb, Sb, Se, Si and Te in high-purity nickel using inductively coupled plasma-optical emission spectrometry (ICP-OES). Talanta. 2015;131(1):505.CrossRefGoogle Scholar
  25. [25]
    Wang H, Gao WY. Chemical reagent-nickel choloride hexahydrate. Beijing: Stangdards of Press of China; 2008. 5.Google Scholar
  26. [26]
    Li Q, Zhang B, Min XB, Shen WQ. Acid leaching kinetics of zinc plant purification residue. T Nonferrous Metal Soc. 2013;23(9):2786.CrossRefGoogle Scholar
  27. [27]
    Liu W, Tang MT, Tang CB, He J, Yang SH, Yang JG. Dissolution kinetics of low grade complex copper ore in ammonia-ammonium chloride solution. T Nonferrous Metal Soc. 2010;20(5):910.CrossRefGoogle Scholar
  28. [28]
    He ZY, Zhang ZY, Yu JX, Zhou F, Xu YL, Xu ZG, Chen Z, Chi R. Kinetics of column leaching of rare earth and aluminum from weathered crust elution-deposited rare earth ore with ammonium salt solutions. Hydrometallurgy. 2016;163(08):33.CrossRefGoogle Scholar
  29. [29]
    Li K, Chen J, Zou D, Liu TC, Li DQ. Kinetics of nitric acid leaching of cerium from oxidation roasted Baotou mixed rare earth concentrate. J Rare Earth. 2019;37(2):198.CrossRefGoogle Scholar
  30. [30]
    Binay KD, Swapan K, Durjoy M. Leaching of elements from coal fly ash: assessment of its potential for use in filling abandoned coal mines. Fuel. 2009;88(7):1314.CrossRefGoogle Scholar

Copyright information

© The Nonferrous Metals Society of China and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of MetallurgyNortheastern UniversityShenyangChina

Personalised recommendations