Advertisement

Rare Metals

, Volume 38, Issue 10, pp 937–945 | Cite as

Texture evolution and mechanical properties of Al–Mg–Si alloys at different intermediate annealing temperatures

  • Yong Li
  • Qi-Pan Wang
  • Guan-Jun GaoEmail author
  • Jia-Dong Li
  • Zhao-Dong Wang
  • Guang-Ming Xu
Article

Abstract

Intermediate annealing treatment produces different effects on the state of particles in Al–Mg–Si alloy sheets, thereby affecting their recrystallization textures and formability. To improve the formability of the sheets, the effects of different intermediate annealing temperatures on the texture evolution and mechanical properties of these sheets for automotive applications were studied using optical microscope (OM), scanning electron microscope (SEM) and tensile tests. The results reveal that intermediate annealing temperature has a significant influence on the recrystallization textures and average plastic strain ratio (r). After solution treatment, all the alloy sheets possess similar recrystallization texture components comprising of cubeND {100}<310> and P {011}<122> orientations, whereas a characteristic strong cube-oriented {100}<001> texture is observed only in the alloy annealed at a temperature of 380 °C. However, in comparison with the alloy not annealed, and the alloy annealed at 550 °C, the alloy annealed at 380 °C possesses a lower average r value. Furthermore, the relationship between textures and r value was analyzed by using the Taylor full constraints model in this study.

Graphic abstract

Keywords

Al–Mg–Si alloys Intermediate annealing Texture evolution Mechanical property 

Notes

Acknowledgements

This study was financially supported by the National Natural Science Foundation of China (No. 51790485).

References

  1. [1]
    Hirsch J, Al-Samman T. Superior light metals by texture engineering: optimized aluminum and magnesium alloys for automotive applications. Acta Mater. 2013;61(3):818.CrossRefGoogle Scholar
  2. [2]
    Prillhofer R, Rank G, Berneder J, Antrekowitsch H, Uggowitzer P, Pogatscher S. Property criteria for automotive Al–Mg–Si sheet alloys. Materials. 2014;7(7):5047.CrossRefGoogle Scholar
  3. [3]
    Xiao WC, Wang BY, Kang Y, Ma WP, Tang XF. Deep drawing of aluminum alloy 7075 using hot stamping. Rare Met. 2017;36(6):485.CrossRefGoogle Scholar
  4. [4]
    Miller WS, Zhuang L, Bottema J, Wittebrood AJ, Smet PD, Haszler A, Vieregge A. Recent development in aluminum alloys for the automotive industry. Mater Sci Eng, A. 2000;280(1):37.CrossRefGoogle Scholar
  5. [5]
    Yu ZQ, Lin ZQ, Zhao YX. Evaluation of fracture limit in automotive aluminum alloy sheet forming. Mater Des. 2007;28(1):203.CrossRefGoogle Scholar
  6. [6]
    Ghosh M, Miroux A, Kestens LAI. Correlating r-value and through thickness texture in Al–Mg–Si alloy sheets. J Alloys Compd. 2015;619:585.CrossRefGoogle Scholar
  7. [7]
    Inoue H, Takasugi T. Texture control for improving deep drawability in rolled and annealed aluminum alloy sheets. Mater Trans. 2007;48(8):2014.CrossRefGoogle Scholar
  8. [8]
    Liu WC, Li Z, Man CS. Effect of heating rate on the microstructure and texture of continuous cast AA3105 aluminum alloy. Mater Sci Eng, A. 2008;478(1–2):173.CrossRefGoogle Scholar
  9. [9]
    Wang XF, Guo MX, Chaupis A, Luo JR, Zhang JS, Zhuang LZ. The dependence of final microstructure, texture evolution and mechanical properties of Al–Mg–Si–Cu alloy sheets on the intermediate annealing. Mater Sci Eng, A. 2015;633:46.CrossRefGoogle Scholar
  10. [10]
    Li SY, Kang SB, Ko HS. Effect of intermediate annealing on texture evolution and plastic anisotropy in an Al–Mg autobody alloy. Metall Mater Trans A. 2000;31(1):99.CrossRefGoogle Scholar
  11. [11]
    Lee KJ, Woo KD. Effect of the hot-rolling microstructure on texture and surface roughening of Al–Mg–Si series aluminum alloy sheets. Met Mater Int. 2011;17(4):689.CrossRefGoogle Scholar
  12. [12]
    Yan LZ, Zhang YA, Xiong BQ, Li XW, Li ZH, Liu HW, Huang SH, Zhao G. Mechanical properties, microstructure and surface quality of Al–1.2Mg–0.6Si–0.2Cu alloy after solution heat treatment. Rare Met. 2017;36(7):550.CrossRefGoogle Scholar
  13. [13]
    Wang J, Luo BH, Bai ZH, Gao Y, Zheng YY, Ren ZW. Microstructures and properties of Al–Mg–Si casting alloy with different Mg/Si ratios. Chin J Rare Met. 2018;42(7):681.Google Scholar
  14. [14]
    Kuijpers NCW, Vermolen FJ, Vuik C, Koenis PTG, Nilsen KE, Zwaag SVD. The dependence of the β-AlFeSi to α-Al(FeMn)Si transformation kinetics in Al–Mg–Si alloys on the alloying elements. Mater Sci Eng, A. 2005;394(1–2):9.CrossRefGoogle Scholar
  15. [15]
    Engler O, Hirsch J. Texture control by thermomechanical processing of AA6xxx Al–Mg–Si sheet alloys for automotive applications—a review. Mater Sci Eng, A. 2002;336(1–2):249.CrossRefGoogle Scholar
  16. [16]
    Leu DK. Prediction of the limiting drawing ratio and the maximum drawing load in cup-drawing. Int J Mach Tools Manuf. 1997;37(2):201.CrossRefGoogle Scholar
  17. [17]
    Engler O. On the origin of the R orientation in the recrystallization textures of aluminum alloys. Metall Mater Trans A. 1999;30(6):1517.CrossRefGoogle Scholar
  18. [18]
    Engler O. On the influence of orientation pinning on growth selection of recrystallisation. Acta Mater. 1998;46(5):1555.CrossRefGoogle Scholar
  19. [19]
    Engler O, Vatne HE, Nes E. The roles of oriented nucleation and oriented growth on recrystallization textures in commercial purity aluminium. Mater Sci Eng, A. 1996;205(1–2):187.CrossRefGoogle Scholar
  20. [20]
    Gao GJ, He C, Li Y, Li JD, Wang ZD, Misra RDK. Influence of different solution methods on microstructure, precipitation behavior and mechanical properties of Al–Mg–Si alloy. Trans Nonferrous Met Soc China. 2018;28(5):839.CrossRefGoogle Scholar
  21. [21]
    Wang XF, Guo MX, Gao LY, Wang F, Zhang JS, Zhuang LZ. Effect of rolling geometry on the mechanical properties, microstructure and recrystallization texture of Al–Mg–Si alloys. Int J Miner Metall Mater. 2015;22(7):738.CrossRefGoogle Scholar
  22. [22]
    Engler O, Yang P, Kong XW. On the formation of recrystallization textures in binary A1–1.3% Mn investigated by means of local texture analysis. Acta Mater. 1996;44(8):3349.CrossRefGoogle Scholar
  23. [23]
    Vatne HE, Engler O, Nes E. Influence of particles on recrystallisation textures and microstructures of aluminium alloy 3103. Mater Sci Technol. 2013;13(2):93.CrossRefGoogle Scholar
  24. [24]
    Chapelle SDL. Cube recrystallization textures in a hot deformed Al–Mg–Si alloy. Scripta Mater. 2001;45(12):1387.CrossRefGoogle Scholar
  25. [25]
    Liu YS, Kang SB, Ko HS. Texture and plastic anisotropy of Al–Mg–0.3Cu–1.0Zn alloys. Scripta Mater. 1997;37(4):411.CrossRefGoogle Scholar
  26. [26]
    Wang XF, Guo MX, Chapuis A, Luo JR, Zhang JS, Zhuang LZ. Effect of solution time on microstructure, texture and mechanical properties of Al–Mg–Si–Cu alloys. Mater Sci Eng, A. 2015;644:137.CrossRefGoogle Scholar
  27. [27]
    Engler O. Nucleation and growth during recrystallisation of aluminium alloys investigated by local texture analysis. Mater Sci Technol. 1996;12(10):859.CrossRefGoogle Scholar
  28. [28]
    Troeger LP, Starke EA. Particle-stimulated nucleation of recrystallization for grain-size control and superplasticity in an Al–Mg–Si–Cu alloy. Mater Sci Eng, A. 2000;293(1–2):19.CrossRefGoogle Scholar
  29. [29]
    Wang XF, Guo MX, Zhang Y, Xing H, Li Y, Luo JR, Zhang JS, Zhuang LZ. The dependence of microstructure, texture evolution and mechanical properties of Al–Mg–Si–Cu alloy sheet on final cold rolling deformation. J Alloys Compd. 2016;657:906.CrossRefGoogle Scholar

Copyright information

© The Nonferrous Metals Society of China and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.State Key Laboratory of Rolling and AutomationNortheastern UniversityShenyangChina

Personalised recommendations