Advertisement

Rare Metals

pp 1–9 | Cite as

Enhanced visible-light photoelectrochemical performance via chemical vapor deposition of Fe2O3 on a WO3 film to form a heterojunction

  • Yi-Fei Zhang
  • Yu-Kun Zhu
  • Chun-Xiao Lv
  • Shou-Juan Lai
  • Wen-Jia Xu
  • Jin SunEmail author
  • Yuan-Yuan SunEmail author
  • Dong-Jiang Yang
Article
  • 5 Downloads

Abstract

A heterojunction photoanode of Fe2O3 loaded on a WO3 film on a fluorine-doped tin oxide substrate (FTO-WO3/Fe2O3) was prepared via a simple hydrothermal and chemical vapor deposition (CVD) growth method. The photoanode showed higher photoelectrochemical (PEC) water-splitting activity than that of the pristine FTO-WO3 under simulated sunlight because of the synergistic effect of Fe2O3 and WO3. The as-synthesized material was characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS). The photocurrent density was estimated by linear sweep voltammetry and further confirmed using intensity-modulated photocurrent spectra. Experiments demonstrated that the coated Fe2O3 enhanced the separation and migration efficiencies of the photoinduced electrons and holes, improving the PEC water-splitting properties. The FTO-WO3/Fe2O3 photoanode showed a 1.25 times enhancement in photocurrent density compared with FTO-WO3. This result suggests that facile chemical vapor deposition growth is an effective way to fabricate heterojunctions and improve the properties of WO3 photoanodes for PEC water-splitting applications.

Keywords

WO3 Fe2O3 Heterojunction Water splitting 

Notes

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Nos. 51672143 and 51808303), Shandong Province Natural Science Foundation (ZR2019BEE027, ZR2017MEM018, ZR2018BEM002), Taishan Scholars Program of Shandong Province, Outstanding Youth of Natural Science in Shandong Province (JQ201713) and Australian Research Council Discovery Project (No. 170103317).

References

  1. [1]
    Choi J, Song T, Kwon J, Lee S, Han H, Roy N, Terashima C, Fujishima A, Paik U, Pitchaimuthu S. WO3 nanofibrous backbone scaffolds for enhanced optical absorbance and charge transport in metal oxide (Fe2O3, BiVO4) semiconductor photoanodes towards solar fuel generation. Appl Surf Sci. 2018;447(31):331.CrossRefGoogle Scholar
  2. [2]
    Zhu T, Chong MN, Chan ES. Nanostructured tungsten trioxide thin films synthesized for photoelectrocatalytic water oxidation: a review. Chemsuschem. 2014;7(11):2974.CrossRefGoogle Scholar
  3. [3]
    Yuan K, Cao Q, Li X, Chen H, Deng Y, Wang Y, Luo W, Lu H, Zhang D. Synthesis of WO3@ZnWO4@ZnO–ZnO hierarchical nanocactus arrays for efficient photoelectrochemical water splitting. Nano Energy. 2017;41:543.CrossRefGoogle Scholar
  4. [4]
    Xu S, Fu D, Song K, Wang L, Yang Z, Yang W, Hou H. One-dimensional WO3/BiVO4 heterojunction photoanodes for efficient photoelectrochemical water splitting. Chem Eng J. 2018;349(1):368.CrossRefGoogle Scholar
  5. [5]
    Zeng Q, Li J, Li L, Bai J, Xia L, Zhou B. Synthesis of WO3/BiVO4 photoanode using a reaction of bismuth nitrate with peroxovanadate on WO3 film for efficient photoelectrocatalytic water splitting and organic pollutant degradation. Appl Catal B. 2017;217(15):21.CrossRefGoogle Scholar
  6. [6]
    Hameed A, Gondal MA, Yamani ZH. Effect of transition metal doping on photocatalytic activity of WO3 for water splitting under laser illumination: role of 3d-orbitals. Catal Commun. 2004;5(11):715.CrossRefGoogle Scholar
  7. [7]
    Li W, Li J, Wang X, Chen Q. Preparation and water-splitting photocatalytic behavior of S-doped WO3. Appl Surf Sci. 2012;263(15):157.CrossRefGoogle Scholar
  8. [8]
    Wang C, Zhang X, Yuan B, Wang Y, Sun P, Wang D, Wei Y, Liu Y. Multi-heterojunction photocatalysts based on WO3 nanorods: structural design and optimization for enhanced photocatalytic activity under visible light. Chem Eng J. 2014;237(1):29.CrossRefGoogle Scholar
  9. [9]
    Rahimnejad S, He JH, Pan F, Lee X, Chen W, Wu K, Xu G. Enhancement of the photocatalytic efficiency of WO3 nanoparticles via hydrogen plasma treatment. Mater Res Express. 2014;1(4):045044.CrossRefGoogle Scholar
  10. [10]
    Su J, Guo L, Bao N, Grimes C. Nanostructured WO3/BiVO4 heterojunction films for efficient photoelectrochemical water splitting. Nano Lett. 2011;11(5):1928.CrossRefGoogle Scholar
  11. [11]
    Cao J, Luo B, Lin H, Xu B, Chen S. Thermodecomposition synthesis of WO3/H2WO4 heterostructures with enhanced visible light photocatalytic properties. Appl Catal B. 2012;111(12):288.CrossRefGoogle Scholar
  12. [12]
    Shamaila S, Sajjad AKL, Chen F, Zhang J. WO3/BiOCl, a novel heterojunction as visible light photocatalyst. J Colloid Interface Sci. 2011;356(2):465.CrossRefGoogle Scholar
  13. [13]
    Liu Y, Wygant BR, Kawashima K, Mabayoje O, Hong T, Lee S, Lin J, Kim J, Yubuta K, Li W, Li J, Mullins C. Facet effect on the photoelectrochemical performance of a WO3/BiVO4 heterojunction photoanode. Appl Catal B. 2019;245(15):227.CrossRefGoogle Scholar
  14. [14]
    Liu Y, Wygant BR, Mabayoje O, Lin J, Kawashima K, Kim J, Li W, Li J, Mullins C. Interface engineering and its effect on WO3-based photoanode and tandem cell. ACS Appl Mater Inter. 2018;10(15):12639.CrossRefGoogle Scholar
  15. [15]
    Faraji M, Yousefi M, Yousefzadeh S, Zirak M, Naseri N, Jeon T, Choi W, Moshfegh A. Two-dimensional materials in semiconductor photoelectrocatalytic systems for water splitting. Energy Environ Sci. 2019;12(1):59.CrossRefGoogle Scholar
  16. [16]
    Etacheri V, Di Valentin C, Schneider J, Bahnemann D, Pillai S. Visible-light activation of TiO2 photocatalysts: advances in theory and experiments. J Photochem Photobiol C. 2015;25:1.CrossRefGoogle Scholar
  17. [17]
    Haussener S, Xiang C, Spurgeon JM, Ardo S, Lewis N, Weber A. Modeling, simulation, and design criteria for photoelectrochemical water-splitting systems. Energy Environ Sci. 2012;5(12):9922.CrossRefGoogle Scholar
  18. [18]
    Park HG, Holt JK. Recent advances in nanoelectrode architecture for photochemical hydrogen production. Energy Environ Sci. 2010;3(8):1028.CrossRefGoogle Scholar
  19. [19]
    Qorbani M, Naseri N, Moradlou O, Azimirad R, Moshfegh A. How CdS nanoparticles can influence TiO2 nanotube arrays in solar energy applications? Appl Catal B. 2015;162:210.CrossRefGoogle Scholar
  20. [20]
    Shinde PS, Annamalai A, Kim JH, Choi SH, Lee JS, Jang J. Exploiting the dynamic Sn diffusion from deformation of FTO to boost the photocurrent performance of hematite photoanodes. Sol Energy Mater Sol Cells. 2015;141:71.CrossRefGoogle Scholar
  21. [21]
    Zhan F, Yang Y, Liu W, Wang K, Li W, Li J. Facile synthesis of FeOOH quantum dots modified ZnO nanorods films via a metal-solating process. ACS Sustain Chem Eng. 2018;6(6):7789.CrossRefGoogle Scholar
  22. [22]
    Senthil RA, Priya A, Theerthagiri J, Selvi A, Nithyadharseni P, Madhavan J. Facile synthesis of α-Fe2O3/WO3 composite with an enhanced photocatalytic and photo-electrochemical performance. Ionics. 2018;24:3673.CrossRefGoogle Scholar
  23. [23]
    Yu CL, Chen JC, Zhou WQ, Wei LF, Fan Q. Grinding calcination preparation of WO3/BiOCl heterostructures with enhanced visible light photocatalytic activity. Mater Res Innov. 2015;19(1):54.CrossRefGoogle Scholar
  24. [24]
    Katsumata K, Motoyoshi R, Matsushita N, Okada K. Preparation of graphitic carbon nitride (g-C3N4)/WO3 composites and enhanced visible-light-driven photodegradation of acetaldehyde gas. J Hazard Mater. 2013;260(15):475.CrossRefGoogle Scholar
  25. [25]
    Mirzaei A, Janghorban K, Hashemi B, Bonyani M, Leonardi SG, Neri G. Highly stable and selective ethanol sensor based on α-Fe2O3 nanoparticles prepared by Pechini sol–gel method. Ceram Int. 2016;42(5):6136.CrossRefGoogle Scholar
  26. [26]
    Mirzaei A, Janghorban K, Hashemi B, Bonavita A, Bonyani M, Leonardi SG, Neri G. Synthesis, characterization and gas sensing properties of Ag@α-Fe2O3 core–shell nanocomposites. Nanomaterials. 2015;5(2):737.CrossRefGoogle Scholar
  27. [27]
    Xue D, Zong F, Zhang J, Lin X, Li Q. Synthesis of Fe2O3/WO3 nanocomposites with enhanced sensing performance to acetone. Chem Phys Lett. 2019;716:61.CrossRefGoogle Scholar
  28. [28]
    Bai S, Yang X, Liu C, Xiang X, Luo R, He J, Chen A. An integrating photoanode of WO3/Fe2O3 heterojunction decorated with NiFe-LDH to improve PEC water splitting efficiency. ACS Sustain Chem Eng. 2018;6(10):12906.CrossRefGoogle Scholar
  29. [29]
    Wang S, Chen H, Gao G, Butburee T, Lyu M, Thaweesak S, Yun J, Du A, Liu G, Wang L. Synergistic crystal facet engineering and structural control of WO3 films exhibiting unprecedented photoelectrochemical performance. Nano Energy. 2016;24:94.CrossRefGoogle Scholar
  30. [30]
    Ma XH, Feng XY, Song C, Zou BK, Ding CX, Yu Y, Chen CH. Facile synthesis of flower-like and yarn-like α-Fe2O3 spherical clusters as anode materials for lithium-ion batteries. Electrochim Acta. 2013;93(30):131.CrossRefGoogle Scholar
  31. [31]
    Chen Y, Gao N, Jiang J. Surface matters: enhanced bactericidal property of core–shell Ag–Fe2O3 nanostructures to their heteromer counterparts from one-pot synthesis. Small. 2013;9(19):3242.Google Scholar
  32. [32]
    Rao PM, Zheng X. Unique magnetic properties of single crystal γ-Fe2O3 nanowires synthesized by flame vapor deposition. Nano Lett. 2011;11(6):2390.CrossRefGoogle Scholar
  33. [33]
    Lee CW, Kim SG, Lee JS. Synthesis of metal oxide hollow nanoparticles by chemical vapor condensation process. Key Eng Mater. 2006;317:219.CrossRefGoogle Scholar
  34. [34]
    Lv F, Fu L, Giannelis EP, Qi G. Preparation of γ-Fe2O3/SiO2-capsule composites capable of using as drug delivery and magnetic targeting system from hydrophobic iron acetylacetonate and hydrophilic SiO2-capsule. Solid State Sci. 2014;34:49.CrossRefGoogle Scholar
  35. [35]
    Suber L, Imperatori P, Ausanio G, Fabbri F, Hofmeister H. Synthesis, morphology, and magnetic characterization of iron oxide nanowires and nanotubes. J Phys Chem B. 2005;109(15):7103.CrossRefGoogle Scholar
  36. [36]
    Yin Z, Bu Y, Ren J, Chen S, Zhao D, Zou Y, Shen S, Yang D. Triggering superior sodium ion adsorption on (200) facet of mesoporous WO3 nanosheet arrays for enhanced supercapacitance. Chem Eng J. 2018;345(1):165.CrossRefGoogle Scholar
  37. [37]
    Zhen C, Wu T, Kadi MW, Ismail L, Liu G, Cheng HM. Design and construction of a film of mesoporous single-crystal rutile TiO2 rod arrays for photoelectrochemical water oxidation. Chin J Catal. 2015;36(12):2171.CrossRefGoogle Scholar
  38. [38]
    Tamilselvan A, Balakumar S, Sakar M, Nayek C, Murugavel P, Kumar KS. Role of oxygen vacancy and Fe–O–Fe bond angle in compositional, magnetic, and dielectric relaxation on Eu-substituted BiFeO3 nanoparticles. Dalton Trans. 2014;43(15):5731.CrossRefGoogle Scholar
  39. [39]
    Kim JH, Jang YJ, Kim JH, Jang JK, Choi SH, Lee JS. Defective ZnFe2O4 nanorods with oxygen vacancy for photoelectrochemical water splitting. Nanoscale. 2015;7(45):19144.CrossRefGoogle Scholar
  40. [40]
    Wang G, Ling Y, Wang H, Yang X, Wang C, Zhang JZ, Li Y. Hydrogen-treated WO3 nanoflakes show enhanced photostability. Energy Environ Sci. 2012;5(3):6180.CrossRefGoogle Scholar
  41. [41]
    Hou Y, Zuo F, Dagg AP, Liu J, Feng P. Branched WO3 nanosheet array with layered C3N4 heterojunctions and CoOx nanoparticles as a flexible photoanode for efficient photoelectrochemical water oxidation. Adv Mater. 2014;26(29):5043.CrossRefGoogle Scholar
  42. [42]
    Jin J, Yu J, Guo D, Cui C, Ho W. A hierarchical Z-scheme CdS-WO3 photocatalyst with enhanced CO2 reduction activity. Small. 2015;11(39):5262.CrossRefGoogle Scholar
  43. [43]
    Wang CW, Yang S, Fang WQ, Liu P, Zhao H, Yang HG. Engineered hematite mesoporous single crystals drive drastic enhancement in solar water splitting. Nano Lett. 2015;16(1):427.CrossRefGoogle Scholar
  44. [44]
    Guo X, Wang L, Tan Y. Hematite nanorods Co-doped with Ru cations with different valence states as high performance photoanodes for water splitting. Nano Energy. 2015;16:320.CrossRefGoogle Scholar
  45. [45]
    Tilley SD, Cornuz M, Sivula K, Grätzel M. Light-induced water splitting with hematite: improved nanostructure and iridium oxide catalysis. Angew Chem Int Ed. 2010;49(36):6405.CrossRefGoogle Scholar
  46. [46]
    Hou Y, Zuo F, Dagg A, Feng P. Visible light-driven α-Fe2O3 nanorod/graphene/BiV1–xMoxO4 core/shell heterojunction array for efficient photoelectrochemical water splitting. Nano Lett. 2012;12(12):6464.CrossRefGoogle Scholar
  47. [47]
    Steinmiller EMP, Choi KS. Photochemical deposition of cobalt-based oxygen evolving catalyst on a semiconductor photoanode for solar oxygen production. Proc Natl Acad Sci USA. 2009;106(49):20633.CrossRefGoogle Scholar
  48. [48]
    Dai G, Yu J, Liu G. Synthesis and enhanced visible-light photoelectrocatalytic activity of p–n junction BiOI/TiO2 nanotube arrays. J Phys Chem C. 2011;115(15):7339.CrossRefGoogle Scholar
  49. [49]
    Yu J, Liao B, Zhang X. Fabrication of 3D ZnO/CuO nanotrees and investigation of their photoelectrochemical properties. Chin J Rare Met. 2018;42(5):449.Google Scholar
  50. [50]
    Wang B, Tian W. Tellurium-based alloy used as evaporator source for solar-blind photocathode. Chin J Rare Met. 2018;42(5):503.Google Scholar
  51. [51]
    Cheng Z, Wang W, Yang L, Xu Z, Ji Z, Huang S. Preparation of La–TiO2 and photocatalytic degradation of petrochemical secondary effluent. Chin J Rare Met. 2018;42(9):950.Google Scholar

Copyright information

© The Nonferrous Metals Society of China and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Environmental Science and Engineering, State Key Laboratory of Bio-fibers and Eco-textiles, Shandong Collaborative Innovation Center of Marine Biobased Fibers and Ecological Textiles, Institute of Marine Biobased MaterialsQingdao UniversityQingdaoChina

Personalised recommendations