Rare Metals

, Volume 38, Issue 10, pp 965–970 | Cite as

Martensitic transformation, shape memory effect and superelasticity of Ti–xZr–(30–x)Nb–4Ta alloys

  • Wen-Tao QuEmail author
  • Hao Gong
  • Jun Wang
  • Yong-Sheng Nie
  • Yan LiEmail author


Martensitic transformations, mechanical properties, shape memory effect and superelasticity of Ti–xZr–(30–x)Nb–4Ta (x = 15, 16, 17 and 18; at%) alloys were investigated. X-ray diffraction (XRD), optical microscopy (OM) and transmission electron microscopy (TEM) results indicated that the Ti–16Zr–14Nb–4Ta, Ti–17Zr–13Nb–4Ta and Ti–18Zr–12Nb–4Ta alloys were mainly composed of α″-martensite, while the Ti–15Zr–15Nb–4Ta alloy was characterized by predominant β phase. The reverse martensitic transformation temperatures increased when Nb was replaced by Zr, indicating stronger β-stabilizing effect for the former. The Ti–15Zr–15Nb–4Ta alloy displayed superelasticity during tensile deformation with a recovery strain of 3.51%. For the other three alloys with higher Zr content, the martensitic reorientation occurred during tensile deformation, resulting in shape memory recovery upon subsequent heating. The maximum shape memory effect was 3.46% in the Ti–18Zr–12Nb–4Ta alloy.


Ti–Zr alloys Martensitic transformation Shape memory effect Superelasticity 



This work was financially supported by the National Key R&D Program of China (No. 2018YFC1106600) and the Funding from the Industrial Transformation and Upgrading of Strong Base Project of China (No. TC150B5C0/03).


  1. [1]
    Xie JX, Liu JL, Huang HY. Structure design of high-performance Cu-based shape memory alloys. Rare Met. 2015;34(9):607.CrossRefGoogle Scholar
  2. [2]
    Zhang YH, Sun MY, Tang GP, Chen JM, Huang SK. Microstructure and martensitic transformation of cast NiTiNb shape memory alloy with different cooling gradient. Chin J Rare Met. 2018;42(11):1121.Google Scholar
  3. [3]
    Xin Y, Li Y, Liu ZD. Thermal stability of dual-phase Ni58Mn25Ga17 high-temperature shape memory alloy. Scr Mater. 2010;63(1):35.CrossRefGoogle Scholar
  4. [4]
    Elahinia MH, Hashemi M, Tabesh M, Bhaduri SB. Manufacturing and processing of NiTi implants: a review. Prog Mater Sci. 2012;57(5):911.CrossRefGoogle Scholar
  5. [5]
    Sun MY, Meng YT, Zhang YH, Wang YY, Fan QC, Huang SK. Texture and its effect on shape memory properties of Ni47Ti44Nb9 forged rods. Chin J Rare Met. 2018;42(8):785.Google Scholar
  6. [6]
    Mohd Jani J, Leary M, Subic A, Gibson MA. A review of shape memory alloy research, applications and opportunities. Mater Des. 2014;56:1078.CrossRefGoogle Scholar
  7. [7]
    Zhao TT, Li Y, Liu Y, Zhao XQ. Nano-hardness, wear resistance and pseudoelasticity of hafnium implanted NiTi shape memory alloy. J Mech Behav Biomed Mater. 2012;13:174.CrossRefGoogle Scholar
  8. [8]
    Liu FS, Ding Z, Li Y, Xu HB. Phase transformation behaviours and mechanical properties of TiNiMo shape memory alloys. Intermetallics. 2005;13(3–4):357.CrossRefGoogle Scholar
  9. [9]
    Biesiekierski A, Wang J, Gepreel MA, Wen C. A new look at biomedical Ti-based shape memory alloys. Acta Biomater. 2012;8(5):1661.CrossRefGoogle Scholar
  10. [10]
    Buenconsejo PJS, Kim HY, Miyazaki S. Effect of ternary alloying elements on the shape memory behavior of Ti–Ta alloys. Acta Mater. 2009;57(8):2509.CrossRefGoogle Scholar
  11. [11]
    Zheng XH, Sui JH, Zhang X, Yang ZY, Wang HB, Tian XH, Cai W. Scr. Mater. 2013;68(12):1008.CrossRefGoogle Scholar
  12. [12]
    Sun F, Hao YL, Nowak S, Gloriant T, Laheurte P, Prima F. A thermo-mechanical treatment to improve the superelastic performances of biomedical Ti–26Nb and Ti–20Nb–6Zr (at%) alloys. J Mech Behav Biomed Mater. 2011;4:1864.CrossRefGoogle Scholar
  13. [13]
    Zhang J, Sun F, Hao YL, Gozdecki N, Lebrun E, Vermaut P, Portier R, Gloriant T, Laheurte P, Prima F. Influence of equiatomic Zr/Nb substitution on superelastic behavior of Ti–Nb–Zr alloy. Mater Sci Eng A. 2013;563:78.CrossRefGoogle Scholar
  14. [14]
    Qu WT, Sun XG, Yuan BF, Xiong CY, Zhang F, Li Y, Sun BH. Microstructures and phase transformations of Ti–30Zr–xNb (x = 5, 7, 9, 13 at%) shape memory alloys. Mater Charact. 2016;122:1.CrossRefGoogle Scholar
  15. [15]
    Meng QK, Huo YF, Ma W, Sui YW, Zhang JY, Guo S, Zhao XQ. Design and fabrication of a low modulus β-type Ti–Nb–Zr alloy by controlling martensitic transformation. Rare Met. 2018;37(9):789.CrossRefGoogle Scholar
  16. [16]
    Qu WT, Sun XG, Yuan BF, Xiong CY, Li Y, Nie YS. Phase transformation and microstructure evolution of the deformed Ti–30Zr–5Nb shape memory alloy. Mater Charact. 2017;126:81.CrossRefGoogle Scholar
  17. [17]
    Qu WT, Sun XG, Yuan BF, Li KM, Wang ZG, Li Y. Tribological behaviour of biomedical Ti–Zr-based shape memory alloys. Rare Met. 2017;36(6):478.CrossRefGoogle Scholar
  18. [18]
    Zhu ZW, Xiong CY, Wang J, Li RG, Ren Y, Wang YD, Li Y. In situ synchrotron X-ray diffraction investigations of the physical mechanism of ultralow strain hardening in Ti–30Zr–10Nb alloy. Acta Mater. 2018;154:45.CrossRefGoogle Scholar
  19. [19]
    Xue PF, Li Y, Zhang F, Zhou CG. Shape memory effect and phase transformations of Ti–19.5Zr–10Nb–0.5Fe alloy. Scr Mater. 2015;101:99.CrossRefGoogle Scholar
  20. [20]
    Yu ZG, Xiong CY, Xue PF, Li Y, Yuan BF, Qu WT. Shape memory behavior of Ti–20Zr–10Nb–5Al alloy subjected to annealing treatment. Rare Met. 2016;35(11):831.CrossRefGoogle Scholar
  21. [21]
    Wang J, Li QQ, Xiong CY, Li Y, Sun BH. Effect of Zr on the martensitic transformation and the shape memory effect in Ti–Zr–Nb–Ta high-temperature shape memory alloys. J Alloys Compd. 2018;737:672.CrossRefGoogle Scholar
  22. [22]
    Kim HY, Ikehara Y, Kim JI, Hosoda H, Miyazaki S. Martensitic transformation, shape memory effect and superelasticity of Ti–Nb binary alloys. Acta Mater. 2006;54(9):2419.CrossRefGoogle Scholar
  23. [23]
    Abdel-Hady M, Fuwa H, Hinoshita K, Kimura H, Shinzato Y, Morinaga M. Phase stability change with Zr content in β-type Ti–Nb alloys. Scr Mater. 2007;57(11):1000.CrossRefGoogle Scholar
  24. [24]
    Cui Y, Li Y, Luo K, Xu HB. Microstructure and shape memory effect of Ti–20Zr–10Nb alloy. Mater Sci Eng A. 2010;527(3):652.CrossRefGoogle Scholar
  25. [25]
    Ping DH, Mitarai Y, Yin FX. Microstructure and shape memory behavior of a Ti–30Nb–3Pd alloy. Scr Mater. 2005;52(12):1287.CrossRefGoogle Scholar
  26. [26]
    Zheng XH, Sui JH, Zhang X, Tian XH, Cai W. Effect of Y addition on the martensitic transformation and shape memory effect of Ti–Ta high-temperature shape memory alloy. J Alloy Compd. 2012;539:144.CrossRefGoogle Scholar
  27. [27]
    Xue PF, Li Y, Li KM, Zhang DY, Zhou CG. Superelasticity, corrosion resistance and biocompatibility of the Ti–19Zr–10Nb–1Fe alloy. Mater Sci Eng C. 2015;50:179.CrossRefGoogle Scholar
  28. [28]
    Li Q, Niinomt M, Nakai M, Cui ZD, Zhu SL, Yang XJ. Effect of Zr on super-elasticity and mechanical properties of Ti–24 at% Nb–(0, 2, 4) at% Zr alloy subjected to aging treatment. Mater Sci Eng A. 2012;536:197.CrossRefGoogle Scholar
  29. [29]
    Zhou Y, Li YX, Yang XJ, Cui ZD, Zhu SJ. Influence of Zr content on phase transformation, microstructure and mechanical properties of Ti75-xNb25Zrx (x = 0–6) alloys. J Alloy Compd. 2009;486(1–2):628.CrossRefGoogle Scholar
  30. [30]
    Zhang F, Yu Z, Xiong CY, Qu WT, Yuan B, Wang Z, Li Y. Martensitic transformations and the shape memory effect in Ti–Zr–Nb–Al high-temperature shape memory alloys. Mater Sci Eng A. 2017;679:14.CrossRefGoogle Scholar

Copyright information

© The Nonferrous Metals Society of China and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Mechanical EngineeringXi’an Shiyou UniversityXi’anChina
  2. 2.School of Materials Science and EngineeringBeihang UniversityBeijingChina
  3. 3.Beijing Advanced Innovation Centre for Biomedical EngineeringBeihang UniversityBeijingChina
  4. 4.Lanzhou Seemine SMA Co. LtdLanzhouChina

Personalised recommendations