Permanent magnetic properties of Nd–Fe–B melt-spun ribbons with Y substitution

  • 32 Accesses


Phase constituents, microstructures and magnetic properties of melt-spun Nd12−xYxFe81B6Nb ribbons were investigated systematically. The influence of Y substitution for Nd on the phase stability, grain size and magnetic exchange coupling was analyzed. It is found that all the ribbons crystallize in the tetragonal 2:14:1 structure, i.e., with single hard magnetic phase at the roll speed of 25 m·s−1. With the increase in Y doping, Curie temperature (TC) increases, while the coercivity decreases monoclinically. However, remanence magnetization (Br) and maximum energy product ((BH)max) fluctuate and the maximum value is obtained at certain amount of Y. The optimum magnetic properties of intrinsic coercivity of intrinsic coercivity (Hcj) = 908.2 kA·m−1 and (BH)max = 118.52 kJ·m−3 are achieved when x = 1.0. It can be attributed to the strengthened exchange coupling between the neighboring nanograins in Nd–Y–Fe–B melt-spun powder based on the Henkel curves. Furthermore, Y substitution also significantly improves the temperature stability of magnetic performance. The coercivity temperature coefficient of β = − 0.157%·°C−1 and remanence temperature coefficient of α = − 0.32%·°C−1 are gained, which are greatly reduced compared with those of the undoped Nd–Fe–B compounds.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7


  1. [1]

    Yang MN, Wang H, Hu YF, Yang LYM, Maclennan A, Yang B. Relating atomic local structures and Curie temperature of NdFeB permanent magnets: an X-ray absorption spectroscopic study. Rare Met. 2018;37(11):983.

  2. [2]

    Xu JL, Huang ZX, Luo JM, Zhong ZC. Corrosion behavior of sintered NdFeB magnets in different acidic solutions. Rare Met Mater Eng. 2015;44(4):786.

  3. [3]

    Zhang R, Liu Y, Ma YL, Zhang LF, Xu JC, Gao SJ. Influence of dynamic crystallization on exchange-coupled NdFeB nanocrystalline permanent magnets. Rare Met. 2006;25(6):596.

  4. [4]

    Hu ZH, Cheng XH, Zhu MG, Li W, Lian FZ. Temperature stability and microstructure of ultra-high intrinsic coercivity Nd–Fe–B magnets. Rare Met. 2008;27(4):358.

  5. [5]

    Pathak AK, Khan M, Gschneidner KA, McCallum RW, Zhou L, Sun KW, Dennis KW, Zhou C, Pinkerton FE, Kramer MJ, Pecharsky VK. Cerium: an unlikely replacement of dysprosium in high performance Nd–Fe–B permanent magnets. Adv Mater. 2015;27(16):2663.

  6. [6]

    Li Z, Liu WQ, Zha SS, Li YQ, Wang YQ, Zhang DT, Yue M, Zhang JX, Huang XL. Effects of Ce substitution on the microstructures and intrinsic magnetic properties of Nd–Fe–B alloy. J Magn Magn Mater. 2015;393:551.

  7. [7]

    Sun L, Li KS, Li HW, Yu DB, Luo Y, Jin JL, Lu S, Quan NT. Hard magnetic properties of melt-spun nanocomposite Y16Fe78B6 ribbons. Rare Met. 2016.

  8. [8]

    Colin CV, Ito M, Yano M, Dempsey NM, Suard E, Givord D. Solid-solution stability and preferential site-occupancy in R2Fe14B compounds. Appl Phys Lett. 2016;108(24):242415.

  9. [9]

    Gu ZF, Ma DD, Xu CF, Liu T, Cheng LY, Du YS, Zhang WF. Crystal structure and phase relations of the R2Fe14B–Y2Fe14B (R = Nd and Pr) systems. J Supercond Novel Magn. 2018;31(1):271.

  10. [10]

    Liu ZW, Qian DY, Zhao LZ, Zheng ZG, Gao XX, Ramanujan RV. Enhancing the coercivity, thermal stability and exchange coupling of nano-composite (Nd, Dy, Y)–Fe–B alloys with reduced Dy content by Zr addition. J Alloy Compd. 2014;606(16):44.

  11. [11]

    Ahmad Z, Yan M, Liu ZW, Tao S, Ma TY. High coercivity (Nd8Y3)–(Fe62Nb3Cr)–B23 magnets produced by injection casting. J Mater Sci. 2013;48(4):1779.

  12. [12]

    Massari S, Ruberti M. Rare earth elements as critical raw materials: focus on international markets and future strategies. Res Policy. 2013;38(1):36.

  13. [13]

    Tang W, Wu YQ, Oster NT, Dennis KW, Kramer MJ, Anderson IE, Mccallum RW. Improved energy product in grained aligned and sintered MRE2Fe14B magnets (MRE = Y+Dy + Nd). J Appl Phys. 2010;107(9):09A728-1.

  14. [14]

    Chen ZA, Luo J, Sui YL, Guo ZM. Effect of Y substitution on magnetic properties and microstructure of Nd–Y–Fe–B nanocomposite magnets. J Rare Earths. 2010;28(2):277.

  15. [15]

    Liu ZW, Qian DY, Zeng DC. Reducing Dy content by Y substitution in nanocomposite NdFeB alloys with enhanced magnetic properties and thermal stability. IEEE Trans Magn. 2012;48(11):2797.

  16. [16]

    Tao S, Ahmad Z, Zhang PY, Yan M, Zheng XM. Nanocomposite Nd–Y–Fe–B–Mo bulk magnets prepared by injection casting technique. J Magn Magn Mater. 2017;437:62.

  17. [17]

    Buschow KHJ. New developments in hard magnetic materials. Rep Prog Phys. 1991;54(9):1123.

  18. [18]

    Liu XB, Altounian Z, Huang M, Zhang Q, Liu JP. The partitioning of La and Y in Nd–Fe–B magnets: a first-principles study. J Alloy Compd. 2013;549:366.

  19. [19]

    Herbst JF. R2Fe14B materials: intrinsic properties and technological aspects. Rev Mod Phys. 1991;63(4):819.

  20. [20]

    Zhang SS, Tian XL, Kong FL. Effect of Y on thermal stability and crystallization behavior of Nd60Fe20Al10Ni10 amorphous alloys. J Rare Earths. 2008;26(5):735.

  21. [21]

    Kneller EF, Hawig R. The exchange-spring magnet: a new material principle for permanent magnets. IEEE Trans Magn. 1991;27(4):3588.

  22. [22]

    Zhang M, Ren WJ, Zhang ZD, Sun XK, Liu W, Geng DY, Zhao XG. Magnetic properties and exchange coupling of nanocomposite (Nd, Y)2Fe14B/α-Fe. J Appl Phys. 2003;94(4):2602.

  23. [23]

    Chen Q, Ma BM, Lu B, Huang MQ, Laughlin DE. A study on the exchange coupling of NdFeB-type nanocomposites using Henkel plots. J Appl Phys. 1999;85(8):5917.

  24. [24]

    Li ZB, Zhang M, Shen BG, Sun JR. Non-uniform magnetization reversal in nanocomposite magnets. Appl Phys Lett. 2013;102(10):102405.

  25. [25]

    Liu YC, Li HW, Li KS, Yu DB, Jin JL, Luo Y, Sun L, Quan NT. Magnetic properties optimization of nanocomposite Nd9Fe85B6 magnets by controlling microstructure of as-quenched ribbons. Rare Met. 2014;33(3):299.

  26. [26]

    Yan WL, Luo Y, Yu DB, Wu GY, Quan NT, Yang YF, Peng HJ, Wang ZL. Structure and magnetic properties of melt-spun Sm–Fe–Nb ribbons and their nitrides. Rare Met. 2018;37(3):232.

  27. [27]

    Schrefl T, Fidler J, Kronmüller H. Remanence and coercivity in isotropic nanocrystalline permanent magnets. Phys Rev B. 1994;49(9):6100.

  28. [28]

    Hirosawa S, Matsuura Y, Yamamoto H, Fujimura S, Sagawa M. Magnetization and magnetic anisotropy of R2Fe14B measured on single crystals. J Appl Phys. 1986;59(3):873.

  29. [29]

    Brown D, Ma BM, Chen ZM. Developments in the processing and properties of NdFeB-type permanent magnets. J Magn Magn Mater. 2003;34(11):432.

  30. [30]

    Peng BX, Ma TY, Zhang YJ, Jin JY, Yan M. Improved thermal stability of Nd–Ce–Fe–B sintered magnets by Y substitution. Scr Mater. 2017;131:11.

Download references


This work was financially supported by the National Key Research and Development Program (No. 2016YFB0700902).

Author information

Correspondence to Yang Luo.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhang, C., Luo, Y., Yu, D. et al. Permanent magnetic properties of Nd–Fe–B melt-spun ribbons with Y substitution. Rare Met. 39, 55–61 (2020) doi:10.1007/s12598-019-01299-y

Download citation


  • Rapid quenching
  • (Nd,Y)–Fe–B alloy
  • Exchange coupling
  • Thermal stability