Rare Metals

pp 1–13 | Cite as

Behaviour of micro- and   nano-alumina-reinforced Mg–3Zn–0.7Zr–1Cu alloy composites processed at different sintering temperatures

  • Eacherath SuneeshEmail author
  • Murugesan Sivapragash


This study aims to develop a magnesium-based hybrid composite via a powder metallurgy (PM) technique by simultaneously reinforcing the matrix (Mg–3Zn–0.7Zr–1Cu) alloy with micro-alumina (3.0 wt%) and nano-alumina (0.5 wt% and 1.0 wt%) particulates. The extensive processing involved two different sintering temperatures (400 and 450 °C) followed by hot extrusion and a heat treatment process. The study aimed to add to our understanding of the effects of sintering temperature and alumina content on the physical characteristics of Mg-based composites. It was revealed that increasing sintering temperature improves the density of composites by increasing their diffusion rates. In addition, significant improvements in the hardness, tensile properties and compressive properties of the composites were observed at higher sintering temperatures. It was also discovered that composites with higher alumina concentrations experienced agglomeration and were more porous than other composites. A micro-structural examination showed that composites with higher concentrations of nano-alumina had a finer grain structure than other composites and underwent a marginal reduction in grain size. However, the tensile and compressive properties of composites decreased when the nano-alumina content was increased to 1.0 wt%. The magnesium hybrid composite containing 3.0 wt% micro-alumina and 0.5 wt% nano-alumina sintered at 450 °C displayed the greatest tensile strength properties in all composites studied. A transformation from brittle to mixed-mode failure, with sufficient evidence of increased plastic deformation, was also noted in the hybrid composites. The present study suggests that adding up to 0.5 wt% nano-alumina and employing a higher sintering temperature enhances the overall characteristics of magnesium/alumina micro-composites.


Hybrid composite Powder metallurgy Alumina particulates Sintering temperature Mechanical characteristics 


  1. [1]
    Aghion E, Bronfin B, Von Buch F, Schumann S, Friedrich H. Newly developed magnesium alloys for powertrain applications. JOM. 2003;55(11):30.CrossRefGoogle Scholar
  2. [2]
    Watarai H. Trend of research and development for magnesium alloys. Sci Technol. 2006;7(18):84.Google Scholar
  3. [3]
    Sankaranarayanan S, Habibi MK, Jayalakshmi S, Jia Ai K, Almajid A, Gupta M. Nano-AlN particle reinforced Mg composites: microstructural and mechanical properties. Mater Sci Technol. 2015;31(9):1122.CrossRefGoogle Scholar
  4. [4]
    Callister WD, Rethwisch DG. Materials Science and Engineering. Hoboken: Wiley; 2011. 157.Google Scholar
  5. [5]
    Luo AA. Magnesium: current and potential automotive applications. JOM. 2002;54(2):42.CrossRefGoogle Scholar
  6. [6]
    Wang YN, Huang JC. Texture analysis in hexagonal materials. Mater Chem Phys. 2003;81(1):11.CrossRefGoogle Scholar
  7. [7]
    Lloyd DJ. Particle reinforced aluminium and magnesium matrix composites. Int Mater Rev. 1994;39(1):1.CrossRefGoogle Scholar
  8. [8]
    Kainer KU. Metal Matrix Composites: Custom-Made Materials for Automotive and Aerospace Engineering. Weinheim: Wiley; 2006. 154.CrossRefGoogle Scholar
  9. [9]
    Goh CS, Wei J, Lee LC, Gupta M. Development of novel carbon nanotube reinforced magnesium nanocomposites using the powder metallurgy technique. Nanotechnology. 2005;17(1):7.CrossRefGoogle Scholar
  10. [10]
    Kvashnin DG, Krasheninnikov AV, Shtansky D, Sorokin PB, Golberg D. Nanostructured BN–Mg composites: features of interface bonding and mechanical properties. Phys Chem Chem Phys. 2016;18(2):965.CrossRefGoogle Scholar
  11. [11]
    Wang XJ, Wang NZ, Wang LY, Hu XS, Wu K, Wang YQ, Huang YD. Processing, microstructure and mechanical properties of micro-SiC particles reinforced magnesium matrix composites fabricated by stir casting assisted by ultrasonic treatment processing. Mater Des. 2014;57:638.CrossRefGoogle Scholar
  12. [12]
    Ibrahim IA, Mohamed FA, Lavernia EJ. Particulate reinforced metal matrix composites—a review. J Mater Sci. 1991;26(5):1137.CrossRefGoogle Scholar
  13. [13]
    Zhang Z, Han BQ, Witkin D, Ajdelsztajn L, Laverna EJ. Synthesis of nanocrystalline aluminum matrix composites reinforced with in situ devitrified Al–Ni–La amorphous particles. Scr Mater. 2006;54(5):869.CrossRefGoogle Scholar
  14. [14]
    Sankaranarayanan S, HemanthShankar V, Jayalakshmi S, Bau NQ, Gupta M. Development of high performance magnesium composites using Ni50Ti50 metallic glass reinforcement and microwave sintering approach. J Alloys Compd. 2015;627:192.CrossRefGoogle Scholar
  15. [15]
    Tun KS, Gupta M. Improving mechanical properties of magnesium using nano-yttria reinforcement and microwave assisted powder metallurgy method. Compos Sci Technol. 2007;67(13):2657.CrossRefGoogle Scholar
  16. [16]
    Paramsothy M, Hassan SF, Srikanth N, Gupta M. Enhancing tensile/compressive response of magnesium alloy AZ31 by integrating with Al2O3 nanoparticles. Mater Sci Eng A. 2009;527(1–2):162.CrossRefGoogle Scholar
  17. [17]
    Hassan SF, Gupta M. Development of high performance magnesium nanocomposites using solidification processing route. Mater Sci Technol. 2004;201(11):1383.CrossRefGoogle Scholar
  18. [18]
    Hassan SF, Gupta M. Development of high performance magnesium nano-composites using nano-Al2O3 as reinforcement. Mater Sci Eng A. 2005;392(1–2):163.CrossRefGoogle Scholar
  19. [19]
    Hassan SF, Gupta M. Effect of different types of nano-size oxide particulates on microstructural and mechanical properties of elemental Mg. J Mater Sci. 2006;41(8):2229.CrossRefGoogle Scholar
  20. [20]
    Wong WL, Eugene MG. Improving overall mechanical performance of magnesium using nano-alumina reinforcement and energy efficient microwave assisted processing route. Adv Eng Mater. 2007;9(10):902.CrossRefGoogle Scholar
  21. [21]
    Prasad DS, Shoba C, Ramanaiah N. Investigations on mechanical properties of aluminum hybrid composites. J Mater Res Technol. 2014;3(1):79.CrossRefGoogle Scholar
  22. [22]
    Devaraju A, Kumar A, Kotiveerachari B. Influence of rotational speed and reinforcements on wear and mechanical properties of aluminum hybrid composites via friction stir processing. Mater Des. 2013;45:576.CrossRefGoogle Scholar
  23. [23]
    Feng YC, Geng L, Zheng PQ, Zheng ZZ, Wang GS. Fabrication and characteristic of Al-based hybrid composite reinforced with tungsten oxide particle and aluminum borate whisker by squeeze casting. Mater Des. 2008;29(10):2023.CrossRefGoogle Scholar
  24. [24]
    Wong WLE, Karthik S, Gupta M. Development of hybrid Mg/Al2O3 composites with improved properties using microwave assisted rapid sintering route. J Mater Sci. 2005;40(13):3395.CrossRefGoogle Scholar
  25. [25]
    Tun KS, Gupta M. Development of magnesium/(yttria + nickel) hybrid nanocomposites using hybrid microwave sintering: microstructure and tensile properties. J Alloys Compd. 2009;487(1–2):76.CrossRefGoogle Scholar
  26. [26]
    Mondal AK, Kumar S. Impression creep behaviour of magnesium alloy-based hybrid composites in the longitudinal direction. Compos Sci Technol. 2008;68(15):3251.CrossRefGoogle Scholar
  27. [27]
    Zhong XK, Li Q, Chen B, Wang JP, Hu JY, Hu W. Effect of sintering temperature on corrosion properties of sol–gel based Al2O3 coatings on pre-treated AZ91D magnesium alloy. Corros Sci. 2009;51(12):2950.CrossRefGoogle Scholar
  28. [28]
    Zhou YJ, Jiang AY, Liu JX. The effect of sintering temperature to the microstructure and properties of AZ91 magnesium alloy by powder metallurgy. Appl Mech Mater. 2013;377(1):250.CrossRefGoogle Scholar
  29. [29]
    Bhuiyan MA, Hoque SM, Choudhury S. Effects of sintering temperature on microstructure and magnetic properties of NiFe2O4 prepared from nano size powder of NiO and Fe2O3. J Bangl Acad Sci. 2010;34(2):189.CrossRefGoogle Scholar
  30. [30]
    Manan A, Iqbal Y, Qazi I. The effect of sintering temperature on phase, microstructure and properties of Sr5Nb4TiO17. J Phys Conf Ser. 2010;241(1):28.Google Scholar
  31. [31]
    Thakur SK, Kwee GT, Gupta M. Development and characterization of magnesium composites containing nano-sized silicon carbide and carbon nanotubes as hybrid reinforcements. J Mater Sci. 2007;42(24):10040.CrossRefGoogle Scholar
  32. [32]
    Erfan Y, Kashani-Bozorg SF. Fabrication of Mg/SiC nanocomposite surface layer using friction stir processing technique. Int J Nanosci Ser. 2011;10(4–5):1073.CrossRefGoogle Scholar
  33. [33]
    Hassan SF, Gupta M. Effect of type of primary processing on the microstructure, CTE and mechanical properties of magnesium/alumina nanocomposites. Compos Struct. 2006;72(1):19.CrossRefGoogle Scholar
  34. [34]
    Kang YC, Chan SLI. Tensile properties of Al2O3 particulate-reinforced aluminum matrix composites. Mater Chem Phys. 2004;85(2):438.CrossRefGoogle Scholar
  35. [35]
    Min KH, Kang SP, Kim DG, Kim YD. Sintering characteristic of Al2O3-reinforced 2xxx series Al composite powders. J Alloys Compd. 2005;400(1–2):150.CrossRefGoogle Scholar
  36. [36]
    Ferkel H, Mordike BL. Magnesium strengthened by SiC nanoparticles. Mater Sci Eng A. 2001;298(1–2):193.CrossRefGoogle Scholar
  37. [37]
    Wong WLE, Gupta M, Lim CYH. Enhancing the mechanical properties of pure aluminum using hybrid reinforcement methodology. Mater Sci Eng A. 2006;423(1–2):148.CrossRefGoogle Scholar
  38. [38]
    Hassan SF, Gupta M. Effect of particulate size of Al2O3 reinforcement on microstructure and mechanical behavior of solidification processed elemental Mg. J Alloys Compd. 2006;419:84.CrossRefGoogle Scholar
  39. [39]
    Mukai T, Yamanoi M, Watanabe H, Higashi K. Ductility enhancement in AZ31 magnesium alloy by controlling its grain structure. Scr Mater. 2001;45(1):89.CrossRefGoogle Scholar
  40. [40]
    Tan MJ, Zhang X. Powder metal matrix composites: selection and processing. Mater Sci Eng A. 1998;244:80.CrossRefGoogle Scholar
  41. [41]
    Gale WF, Totemeier TC. Smithells Metals Reference Book. Oxford: Elsevier Butterworth-Heinemann; 2004. 15.Google Scholar
  42. [42]
    Bauccio M. ASM Metals Reference Book. Novelty: ASM International; 1993. 248.Google Scholar
  43. [43]
    Barnett MR, Keshavarz Z, Beer AG, Atwell D. Influence of grain size on the compressive deformation of wrought Mg–3Al–1Zn. Acta Mater. 2004;52(17):5093.CrossRefGoogle Scholar
  44. [44]
    Yang HJ, Yin SM, Huang CX, Zhang ZF, Wu SD, Li SX, Liu YD. EBSD study on deformation twinning in AZ31 magnesium alloy during quasi-in-situ compression. Adv Eng Mater. 2008;10(10):955.CrossRefGoogle Scholar
  45. [45]
    Zhong XL, Wong WLE, Gupta M. Enhancing strength and ductility of magnesium by integrating it with aluminum nanoparticles. Acta Mater. 2007;55(18):6338.CrossRefGoogle Scholar
  46. [46]
    Goh CS, Wei J, Lee LC, Gupta M. Simultaneous enhancement in strength and ductility by reinforcing magnesium with carbon nanotubes. Mater Sci Eng A. 2006;423(1–2):153.CrossRefGoogle Scholar
  47. [47]
    Hull D. Fractography: Observing, Measuring and Interpreting Fracture Surface Topography. Cambridge: Cambridge University Press; 1999. 244.Google Scholar
  48. [48]
    Hassan SF, Gupta M. Enhancing physical and mechanical properties of Mg using nanosized Al2O3 particulates as reinforcement. Metall Mater Trans A. 2005;36(8):2253.CrossRefGoogle Scholar
  49. [49]
    Barnett MR. Twinning and the ductility of magnesium alloys: part I: “Tension” twins. Mater Sci Eng A. 2007;464(1–2):1.CrossRefGoogle Scholar
  50. [50]
    Nguyen QB, Gupta M. Enhancing compressive response of AZ31B magnesium alloy using alumina nanoparticulates. Compos Sci Technol. 2008;68(10):2185.CrossRefGoogle Scholar

Copyright information

© The Nonferrous Metals Society of China and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Production EngineeringVidya Academy of Science and TechnologyThrissurIndia
  2. 2.Department of Mechanical EngineeringPSN College of Engineering and TechnologyTirunelveliIndia

Personalised recommendations