Advertisement

Rare Metals

, Volume 38, Issue 12, pp 1178–1186 | Cite as

Design and fabrication of a new fluorescence enhancement system of silver nanoparticles-decorated aligned silver nanowires

  • Jian-Chao Wang
  • Hong-Sheng Luo
  • Ming-Hai Zhang
  • Xi-Hong Zu
  • Jie Zhang
  • Yu-Xin Gu
  • Guo-Bin YiEmail author
Article
  • 53 Downloads

Abstract

A new substrate, aligned Ag nanowires decorated with silver nanoparticle composite structure (AgNWs@AgNPs), was fabricated to investigate metal-enhanced fluorescence (MEF) and its mechanism. The new composite structure was fabricated via a three-phase interface assembly method followed by SnCl2 sensitization and AgNO3 reduction process. The size and distribution of the nanoparticles on silver nanowires increased with the sensitization and reduction cycles. The formation of AgNPs on the surfaces of AgNWs was confirmed by multiple characterization methods including scanning electron microscopy (SEM), transmission electron microscope (TEM), atomic force microscopy (AFM) and X-ray diffraction (XRD). The results show that the fluorescence intensity of the poly(3-hexylthiophene) (P3HT) on the composite structure was greatly enhanced compared with that on bare glass substrate, and the intensity increased with the increase in particle sizes and density. The mechanism was based on the increase in excitation rate and the radiation decay rate. The new type of substrate could serve as a good and efficient MEF substrate for high-performance fluorescence-based devices.

Keywords

Fluorescence enhancement Aligned Ag nanowires Self-assembly Mechanism 

Notes

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (No. 51273048), Science and Technology Planning Project of Guangdong Province (No. 2017B090915004) and the Open Operation of Guangdong Provincial Key Laboratory of Advanced Coatings Research and Development (No. 2017B030314105).

References

  1. [1]
    Drexhage KH, Kuhn H, Schäfer FP. Variation of the fluorescence decay time of a molecule in front of a mirror. Ber Bunsenges Phys Chem. 1968;72(2):329.Google Scholar
  2. [2]
    Drexhage KH. Influence of a dielectric interface on fluorescence decay time. J Lumin. 1970;1–2(Supplement C):693.Google Scholar
  3. [3]
    Bauch M, Toma K, Toma M, Zhang QW, Dostalek J. Plasmon-enhanced fluorescence biosensors: a review. Plasmonics. 2014;9(4):781.Google Scholar
  4. [4]
    Tanabe K. Field enhancement around metal nanoparticles and nanoshells: a systematic investigation. J Phys Chem C. 2008;112(40):15721.Google Scholar
  5. [5]
    Goldys EM, Drozdowicz-Tomsia K, Xie F, Shtoyko T, Matveeva E, Gryczynski I, Gryczynski Z. Fluorescence amplification by electrochemically deposited silver nanowires with fractal architecture. J Am Chem Soc. 2007;129(40):12117.Google Scholar
  6. [6]
    Saraswat S, Desireddy A, Zheng DS, Guo LJ, Lu HP, Bigioni TP, Isailovic D. Energy transfer from fluorescent proteins to metal nanoparticles. J Phys Chem C. 2011;115(35):17587.Google Scholar
  7. [7]
    Flauraud V, Regmi R, Winkler PM, Alexander DTL, Rigneault H, van Hulst NF, Garcia-Parajo MF, Wenger J, Brugger J. In-plane plasmonic antenna arrays with surface nanogaps for giant fluorescence enhancement. Nano Lett. 2017;17(3):1703.Google Scholar
  8. [8]
    Pang J, Theodorou IG, Centeno A, Petrov PK, Alford NM, Ryan MP, Xie F. Gold nanodisc arrays as near infrared metal-enhanced fluorescence platforms with tuneable enhancement factors. J Mater Chem C. 2017;5(4):917.Google Scholar
  9. [9]
    Geddes CD, Parfenov A, Roll D, Fang JY, Lakowicz JR. Electrochemical and laser deposition of silver for use in metal-enhanced fluorescence. Langmuir. 2003;19(15):6236.Google Scholar
  10. [10]
    Shin DO, Mun JH, Hwang GT, Yoon JM, Kim JY, Yun JM, Yang YB, Oh Y, Lee JY, Shin J, Lee KJ, Park S, Kim JU, Kim SO. Multicomponent nanopatterns by directed block copolymer self-assembly. ACS Nano. 2013;7(10):8899.Google Scholar
  11. [11]
    Mistark PA, Park S, Yalcin SE, Lee DH, Yavuzcetin O, Tuominen MT, Russell TP, Achermann M. Block-copolymer-based plasmonic nanostructures. ACS Nano. 2009;3(12):3987.Google Scholar
  12. [12]
    Punj D, Regmi R, Devilez A, Plauchu R, Moparthi SB, Stout B, Bonod N, Rigneault H, Wenger J. Self-assembled nanoparticle dimer antennas for plasmonic-enhanced single-molecule fluorescence detection at micromolar concentrations. ACS Photonics. 2015;2(8):1099.Google Scholar
  13. [13]
    Bae S, Han H, Bae JG, Lee EY, Im SH, Kim DH, Seo TS. Growth of silver nanowires from controlled silver chloride seeds and their application for fluorescence enhancement based on localized surface plasmon resonance. Small. 2017;13(21):1603392.Google Scholar
  14. [14]
    Goh MS, Lee YH, Pedireddy S, Phang IY, Tjiu WW, Tan JMR, Ling XY. A chemical route to increase hot spots on silver nanowires for surface-enhanced Raman spectroscopy application. Langmuir. 2012;28(40):14441.Google Scholar
  15. [15]
    Dai ZG, Xiao XH, Liao L, Ying JJ, Mei F, Wu W, Ren F, Li WQ, Jiang CZ. Enhanced and polarization dependence of surface-enhanced Raman scattering in silver nanoparticle array-nanowire systems. Appl Phys Lett. 2013;102(16):1052.Google Scholar
  16. [16]
    Chen CF, Hao JM, Zhu LY, Yao YQ, Meng XG, Weimer WN, Wang QWK. Direct two-phase interfacial self-assembly of aligned silver nanowire films for surface enhanced Raman scattering applications. J Mater Chem A. 2013;1(43):13496.Google Scholar
  17. [17]
    Liu JW, Zhang SY, Qi H, Wen WC, Yu SH. A general strategy for self-assembly of nanosized building blocks on liquid/liquid interfaces. Small. 2012;8(15):2412.Google Scholar
  18. [18]
    Tao A, Kim F, Hess C, Goldberger J, He RR, Sun YG, Xia YN, Yang PD. Langmuir-blodgett silver nanowire monolayers for molecular sensing using surface-enhanced Raman spectroscopy. Nano Lett. 2003;3(9):1229.Google Scholar
  19. [19]
    Lee SJ, Morrill AR, Moskovits M. Hot spots in silver nanowire bundles for surface-enhanced Raman spectroscopy. J Am Chem Soc. 2006;128(7):2200.Google Scholar
  20. [20]
    Zhang D, Zhang L, Shi L, Fang C, Li H, Gao R, Huang L, Zhang J. In situ supported MnOx–CeOx on carbon nanotubes for the low-temperature selective catalytic reduction of NO with NH3. Nanoscale. 2013;5(3):1127.Google Scholar
  21. [21]
    Peng C, Wang W, Zhang W, Liang Y, Zhuo L. Surface plasmon-driven photoelectrochemical water splitting of TiO2 nanowires decorated with Ag nanoparticles under visible light illumination. Appl Surf Sci. 2017;420:286.Google Scholar
  22. [22]
    Khandare L, Terdale S. Gold nanoparticles decorated MnO2 nanowires for high performance supercapacitor. Appl Surf Sci. 2017;418:22.Google Scholar
  23. [23]
    Han J, Zhang D, Maitarad P, Shi L, Cai S, Li H, Huang L, Zhang J. Fe2O3 nanoparticles anchored in situ on carbon nanotubes via an ethanol-thermal strategy for the selective catalytic reduction of NO with NH3. Catal Sci Technol. 2015;5(1):438.Google Scholar
  24. [24]
    Tran ML, Centeno SP, Hutchison JA, Engelkamp H, Liang D, Van Tendeloo G, Sels BF, Hofkens J, Uji-i H. Control of surface plasmon localization via self-assembly of silver nanoparticles along silver nanowires. J Am Chem Soc. 2008;130(51):17240.Google Scholar
  25. [25]
    Wang YJ, Zu XH, Yi GB, Luo HS, Huang HL, Song XL. Ag nanowire-Ag nanoparticle hybrids for the highly enhanced fluorescence detection of protoporphyrin IX based on surface plasmon-enhanced fluorescence. Chin J Chem. 2016;34(12):1321.Google Scholar
  26. [26]
    Michaels AM, Jiang J, Brus L. Ag nanocrystal junctions as the site for surface-enhanced Raman scattering of single Rhodamine 6G molecules. J Phys Chem B. 2000;104(50):11965.Google Scholar
  27. [27]
    Zhao LB, Liu XX, Zhang M, Liu ZF, Wu DY, Tian ZQ. Surface plasmon catalytic aerobic oxidation of aromatic amines in metal/molecule/metal junctions. J Phys Chem C. 2016;120(2):944.Google Scholar
  28. [28]
    Jiang J, Bosnick K, Maillard M, Brus L. Single molecule Raman spectroscopy at the junctions of large Ag nanocrystals. J Phys Chem B. 2003;107(37):9964.Google Scholar
  29. [29]
    Jia CC, Migliore A, Xin N, Huang SY, Wang JY, Yang Q, Wang SP, Chen HL, Wang DM, Feng BY, Liu ZR, Zhang GY, Qu DH, Tian H, Ratner MA, Xu HQ, Nitzan A, Guo XF. Covalently bonded single-molecule junctions with stable and reversible photoswitched conductivity. Science. 2016;352(6292):1443.Google Scholar
  30. [30]
    Dasari R, Zamborini FP. Surface enhanced Raman spectroscopy at electrochemically fabricated silver nanowire junctions. Anal Chem. 2016;88(1):675.Google Scholar
  31. [31]
    Schmelzeisen M, Zhao Y, Klapper M, Mullen K, Kreiter M. Fluorescence enhancement from individual plasmonic gap resonances. ACS Nano. 2010;4(6):3309.Google Scholar
  32. [32]
    Mock JJ, Hill RT, Degiron A, Zauscher S, Chilkoti A, Smith DR. Distance-dependent plasmon resonant coupling between a gold nanoparticle and gold film. Nano Lett. 2008;8(8):2245.Google Scholar
  33. [33]
    Wang JC, Luo HS, Zhang MH, Zu XH, Li ZW, Yi GB. Aligned chemically etched silver nanowire monolayer as surface-enhanced Raman scattering substrates. Nanoscale Res Lett. 2017;12(1):587.Google Scholar
  34. [34]
    Menon VP, Martin CR. Fabrication and evaluation of nanoelectrode ensembles. Anal Chem. 1995;67(13):1920.Google Scholar
  35. [35]
    Wan J, Cai W, Meng X, Liu E. Monodisperse water-soluble magnetite nanoparticles prepared by polyol process for high-performance magnetic resonance imaging. Chem Commun. 2007;47(47):5004.Google Scholar
  36. [36]
    Chen DP, Qiao XL, Qiu XL, Chen JG, Jiang RZ. Large-scale synthesis of silver nanowires via a solvothermal method. J Mater Sci-Mater Electron. 2011;22(1):6.Google Scholar
  37. [37]
    Okamoto H, Imura K. Near-field imaging of optical field and plasmon wavefunctions in metal nanoparticles. J Mater Chem. 2006;16(40):3920.Google Scholar
  38. [38]
    Felidj N, Grand J, Laurent G, Aubard J, Levi G, Hohenau A, Galler N, Aussenegg FR, Krenn JR. Multipolar surface plasmon peaks on gold nanotriangles. J Chem Phys. 2008;128(9):94702.Google Scholar
  39. [39]
    Singh MP, Strouse GF. Involvement of the LSPR spectral overlap for energy transfer between a dye and Au nanoparticle. J Am Chem Soc. 2010;132(27):9383.Google Scholar
  40. [40]
    Jang HY, Kim SK, Park S. Electromagnetic field enhancement in the multilayer of metallic nanomesh films: synthesis and application as surface-enhanced Raman scattering substrates. J Phys Chem C. 2015;119(19):10585.Google Scholar
  41. [41]
    Yang YZ, Sun L, Ou JM, He YT, Lin XF, Yuan ZK, Lin WS, Hong W, Yu DS, Chen XD, Qiu ZR. Plasmonic effects and the morphology changes on the active material P3HT:PCBM used in polymer solar cells using Raman spectroscopy. J Raman Spectrosc. 2016;47(8):888.Google Scholar
  42. [42]
    Cui QL, He F, Li LD, Mohwald H. Controllable metal-enhanced fluorescence in organized films and colloidal system. Adv Colloid Interface. 2014;207:164.Google Scholar
  43. [43]
    Hao J, Liu T, Huang Y, Chen G, Liu A, Wang S, Wen W. Metal nanoparticle-nanowire assisted SERS on film. J Phys Chem C. 2015;119(33):19376.Google Scholar
  44. [44]
    Lakowicz JR, Ray K, Chowdhury M, Szmacinski H, Fu Y, Zhang J, Nowaczyk K. Plasmon-controlled fluorescence: a new paradigm in fluorescence spectroscopy. Analyst. 2008;133(10):1308.Google Scholar

Copyright information

© The Nonferrous Metals Society of China and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Chemical Engineering and Light IndustryGuangdong University of TechnologyGuangzhouChina
  2. 2.Guangdong Provincial Key Laboratory of Advanced Coatings Research and DevelopmentChina National Electric Apparatus Research Institute Co., Ltd.GuangzhouChina

Personalised recommendations