Advertisement

Rare Metals

pp 1–7 | Cite as

Bifunctional metal–organic frameworks toward photocatalytic CO2 reduction by post-synthetic ligand exchange

  • Xiao-Hui Chen
  • Qin Wei
  • Jin-Dui Hong
  • Rong Xu
  • Tian-Hua ZhouEmail author
Article

Abstract

Photocatalytic reduction of CO2 to useful fuel has been identified as a promising strategy to address the energy and environmental issues. Development of well-defined photocatalysts toward CO2 reduction has attracted increasing interest to gain insight into the reactive mechanism. Herein, by post-synthetic ligand exchange, a bifunctional Re-based metal–organic framework (MOF) was successfully prepared. It not only serves as a photosensitizer but also acts as a catalyst for photochemical reduction of CO2. Furthermore, it is found that a Re-based MOF containing 30% Re-based ligands displays improved activity compared to MOF with 100% Re-based ligands. This work provides clues to the design and synthesis of bifunctional MOFs toward photocatalytic CO2 reduction.

Graphical abstract

A bifunctional UiO-67-Re was developed as a photocatalyst for CO2 reduction by post-synthetic ligand exchange strategy. Its synthesis and photocatalytic performance were investigated.

Keywords

Photocatalysis Metal–organic framework (MOF) CO2 reduction Post-synthesis 

Notes

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Nos.21773242 and 51772291).

References

  1. [1]
    Liu C, Colón BC, Ziesack M, Silver PA, Nocera DG. Water splitting–biosynthetic system with CO2 reduction efficiencies exceeding photosynthesis. Science. 2016;352(6290):1210.CrossRefGoogle Scholar
  2. [2]
    Gao H, Yue HH, Qi F, Yu B, Zhang WL, Chen YF. Few-layered ReS2 nanosheets grown on graphene as electrocatalyst for hydrogen evolution reaction. Rare Met. 2018;37(12):1014.CrossRefGoogle Scholar
  3. [3]
    Wang S, Chen P, Bai Y, Yun JH, Liu G, Wang L. New BiVO4 dual photoanodes with enriched oxygen vacancies for efficient solar-driven water splitting. Adv Mater. 2018;30(20):1800486.CrossRefGoogle Scholar
  4. [4]
    Zhao Y, Li Z, Li M, Liu J, Liu X, Waterhouse GIN, Wang Y, Zhao J, Gao W, Zhang Z, Long R, Zhang Q, Gu L, Liu X, Wen X, Ma D, Wu LZ, Tung CH, Zhang T. Reductive transformation of layered-double-hydroxide nanosheets to Fe-based heterostructures for efficient visible-light photocatalytic hydrogenation of CO. Adv Mater. 2018;30(36):1803127.CrossRefGoogle Scholar
  5. [5]
    Fan PD, Ji TH. Application research of MoS2 nanosheets in catalysis and biology. Chin J Rare Met. 2018;42(4):429.Google Scholar
  6. [6]
    Chen R, Wang P, Chen J, Wang C, Ao Y. Synergetic effect of MoS2 and MXene on the enhanced H2 evolution performance of CdS under visible light irradiation. Appl Surf Sci. 2019;473:11.CrossRefGoogle Scholar
  7. [7]
    Liu W, Shen J, Yang X, Liu Q, Tang H. Dual Z-scheme g-C3N4/Ag3PO4/Ag2MoO4 ternary composite photocatalyst for solar oxygen evolution from water splitting. Appl Surf Sci. 2018;456:369.CrossRefGoogle Scholar
  8. [8]
    Ao Y, Wang K, Wang P, Wang C, Hou J. Synthesis of novel 2D-2D p-n heterojunction BiOBr/La2Ti2O7 composite photocatalyst with enhanced photocatalytic performance under both UV and visible light irradiation. Appl Catal B. 2016;194:157.CrossRefGoogle Scholar
  9. [9]
    Zhang L, Zhao ZJ, Gong J. Nanostructured materials for heterogeneous electrocatalytic CO2 reduction and their related reaction mechanisms. Angew Chem Int Ed. 2017;56(38):11326.CrossRefGoogle Scholar
  10. [10]
    Huang H, Lin J, Zhu G, Weng Y, Wang X, Fu X, Long J. A long-lived mononuclear cyclopentadienyl ruthenium complex grafted onto anatase TiO2 for Efficient CO2 photoreduction. Angew Chem Int Ed. 2016;55(29):8314.CrossRefGoogle Scholar
  11. [11]
    Tu W, Zhou Y, Zou Z. Photocatalytic conversion of CO2 into renewable hydrocarbon fuels: state-of-the-art accomplishment, challenges, and prospects. Adv Mater. 2014;26(27):4607.CrossRefGoogle Scholar
  12. [12]
    Cao S, Shen B, Tong T, Fu J, Yu J. 2D/2D heterojunction of ultrathin MXene/Bi2WO6 nanosheets for improved photocatalytic CO2 reduction. Adv Funct Mater. 2018;28(21):1800136.CrossRefGoogle Scholar
  13. [13]
    Dong WH, Wu DD, Luo JM, Xing QJ, Liu H, Zou JP, Luo XB, Min XB, Liu HL, Luo SL, Au CT. Coupling of photodegradation of RhB with photoreduction of CO2 over rGO/SrTi0.95Fe0.05O3−δ catalyst: catalyst a strategy for one-pot conversion of organic pollutants to methanol and ethanol. J Catal. 2017;349:218.CrossRefGoogle Scholar
  14. [14]
    Zou JP, Chen Y, Liu SS, Xing QJ, Dong WH, Luo XB, Dai WL, Xiao X, Luo JM, Crittenden J. Electrochemical oxidation and advanced oxidation processes using a 3D hexagonal Co3O4 array anode for 4-nitrophenol decomposition coupled with simultaneous CO2 conversion to liquid fuels via a flower-like CuO cathode. Water Res. 2019;150:330.CrossRefGoogle Scholar
  15. [15]
    Bai XF, Chen W, Wang BY, Feng GH, Wei W, Jiao Z, Sun YH. Recent progress on electrochemical reduction of carbon dioxide. Acta Phys Chim Sin. 2017;33(12):2388.Google Scholar
  16. [16]
    Liu X, Inagaki S, Gong J. Heterogeneous molecular systems for photocatalytic CO2 reduction with water oxidation. Angew Chem Int Ed. 2016;55(48):14924.CrossRefGoogle Scholar
  17. [17]
    Ou M, Tu W, Yin S, Xing W, Wu S, Wang H, Wan S, Zhong Q, Xu R. Amino-assisted anchoring of CsPbBr3 perovskite quantum dots on porous g-C3N4 for enhanced photocatalytic CO2 reduction. Angew Chem Int Ed. 2018;57(41):13570.CrossRefGoogle Scholar
  18. [18]
    Gao D, Cai F, Wang G, Bao X. Nanostructured heterogeneous catalysts for electrochemical reduction of CO2. Curr Opin Green Sustain Chem. 2017;3:39.CrossRefGoogle Scholar
  19. [19]
    Xie H, Wang T, Liang J, Li Q, Sun S. Cu-based nanocatalysts for electrochemical reduction of CO2. Nano Today. 2018;21:41.CrossRefGoogle Scholar
  20. [20]
    Takeda H, Koike K, Inoue H, Ishitani O. Development of an efficient photocatalytic system for CO2 reduction using rhenium(I) complexes based on mechanistic studies. J Am Chem Soc. 2008;130(6):2023.CrossRefGoogle Scholar
  21. [21]
    Cohen SM. Postsynthetic methods for the functionalization of metal-organic frameworks. Chem Rev. 2011;112(2):970.CrossRefGoogle Scholar
  22. [22]
    Garcia H, Ferrer B. Photocatalysis by MOFs. In: i Xamena FX, Gascon J, editors. Metal Organic Frameworks as Heterogeneous Catalysts. Cambridge: Royal Society of Chemistry; 2103. 365.Google Scholar
  23. [23]
    Tian L, Yang X, Liu Q, Qu F, Tang H. Anchoring metal-organic framework nanoparticles on graphitic carbon nitrides for solar-driven photocatalytic hydrogen evolution. Appl Surf Sci. 2018;455:403.CrossRefGoogle Scholar
  24. [24]
    Liu MR, Hong QL, Li QH, Du Y, Zhang HX, Chen S, Zhou T, Zhang J. Cobalt boron imidazolate framework derived cobalt nanoparticles encapsulated in B/N codoped nanocarbon as efficient bifunctional electrocatalysts for overall water splitting. Adv Funct Mater. 2018;28(26):1801136.CrossRefGoogle Scholar
  25. [25]
    Xiao JD, Han L, Luo J, Yu SH, Jiang HL. Integration of plasmonic effects and Schottky junctions into metal-organic framework composites: steering charge flow for Enhanced visible-light photocatalysis. Angew Chem Int Ed. 2018;57(4):1103.CrossRefGoogle Scholar
  26. [26]
    Meyer K, Ranocchiari M, van Bokhoven JA. Metal organic frameworks for photo-catalytic water splitting. Energy Environ Sci. 2015;8(7):1923.CrossRefGoogle Scholar
  27. [27]
    Wang S, Yao W, Lin J, Ding Z, Wang X. Cobalt imidazolate metal-organic frameworks photosplit CO2 under mild reaction conditions. Angew Chem Int Ed. 2014;53(4):1034.CrossRefGoogle Scholar
  28. [28]
    Zhang T, Lin W. Metal-organic frameworks for artificial photosynthesis and photocatalysis. Chem Soc Rev. 2014;43(16):5982.CrossRefGoogle Scholar
  29. [29]
    Zhu QL, Xu Q. Metal-organic framework composites. Chem Soc Rev. 2014;43(16):5468.CrossRefGoogle Scholar
  30. [30]
    Gomes Silva C, Luz I, Llabrés i Xamena FX, Corma A, García H. Water stable Zr–benzenedicarboxylate metal–organic frameworks as photocatalysts for hydrogen generation. Chem Eur J. 2010;16(36):11133.CrossRefGoogle Scholar
  31. [31]
    Fateeva A, Chater PA, Ireland CP, Tahir AA, Khimyak YZ, Wiper PV, Darwent JR, Rosseinsky MJ. A water-stable porphyrin-based metal-organic framework active for visible-light photocatalysis. Angew Chem Int Ed. 2012;51(30):7440.CrossRefGoogle Scholar
  32. [32]
    Long J, Wang S, Ding Z, Wang S, Zhou Y, Huang L, Wang X. Amine-functionalized zirconium metal-organic framework as efficient visible-light photocatalyst for aerobic organic transformations. Chem Commun. 2012;48(95):11656.CrossRefGoogle Scholar
  33. [33]
    Xu HQ, Hu J, Wang D, Li Z, Zhang Q, Luo Y, Yu SH, Jiang HL. Visible-light photoreduction of CO2 in a metal-organic framework: boosting electron-hole separation via electron trap states. J Am Chem Soc. 2015;137(42):13440.CrossRefGoogle Scholar
  34. [34]
    Chen EX, Qiu M, Zhang YF, Zhu YS, Liu LY, Sun YY, Bu X, Zhang J, Lin Q. Acid and base resistant zirconium polyphenolate-metalloporphyrin scaffolds for efficient CO2 photoreduction. Adv Mater. 2018;30(2):1704388.CrossRefGoogle Scholar
  35. [35]
    Wang D, Huang R, Liu W, Sun D, Li Z. Fe-based MOFs for photocatalytic CO2 reduction: role of coordination unsaturated sites and dual excitation pathways. ACS Catal. 2014;4(12):4254.CrossRefGoogle Scholar
  36. [36]
    Wang C, Xie Z, deKrafft KE, Lin W. Doping metal-organic frameworks for water oxidation, carbon dioxide reduction, and organic photocatalysis. J Am Chem Soc. 2011;133(34):13445.CrossRefGoogle Scholar
  37. [37]
    Wang C, Wang JL, Lin W. Elucidating molecular iridium water oxidation catalysts using metal-organic frameworks: a comprehensive structural, catalytic, spectroscopic, and kinetic study. J Am Chem Soc. 2012;134(48):19895.CrossRefGoogle Scholar
  38. [38]
    Zhou T, Du Y, Borgna A, Hong J, Wang Y, Han J, Zhang W, Xu R. Post-synthesis modification of a metal-organic framework to construct a bifunctional photocatalyst for hydrogen production. Energy Environ Sci. 2013;6(11):3229.CrossRefGoogle Scholar
  39. [39]
    Xiao JD, Jiang HL. Metal-organic frameworks for photocatalysis and photothermal catalysis. Acc Chem Res. 2018;51(4):910.CrossRefGoogle Scholar
  40. [40]
    Li R, Hu J, Deng M, Wang H, Wang X, Hu Y, Jiang HL, Jiang J, Zhang Q, Xie Y, Xiong Y. Integration of an inorganic semiconductor with a metal-organic framework: a platform for enhanced gaseous photocatalytic reactions. Adv Mater. 2014;26(28):4783.CrossRefGoogle Scholar
  41. [41]
    Sun D, Fu Y, Liu W, Ye L, Wang D, Yang L, Fu X, Li Z. Studies on photocatalytic CO2 reduction over NH2-Uio-66(Zr) and its derivatives: towards a better understanding of photocatalysis on metal-organic frameworks. Chem Eur J. 2013;19(42):14279.CrossRefGoogle Scholar
  42. [42]
    Lei Z, Xue Y, Chen W, Qiu W, Zhang Y, Horike S, Tang L. MOFs-based heterogeneous catalysts: new opportunities for energy-related CO2 conversion. Adv Energy Mater. 2018;8(32):1801587.CrossRefGoogle Scholar
  43. [43]
    Li F, Wang D, Xing QJ, Zhou G, Liu SS, Li Y, Zheng LL, Ye P, Zou JP. Design and syntheses of MOF/COF hybrid materials via postsynthetic covalent modification: an efficient strategy to boost the visible-light-driven photocatalytic performance. Appl Catal B. 2019;243:621.CrossRefGoogle Scholar
  44. [44]
    Fu Y, Sun D, Chen Y, Huang R, Ding Z, Fu X, Li Z. An amine-functionalized titanium metal-organic framework photocatalyst with visible-light-induced activity for CO2 reduction. Angew Chem Int Ed. 2012;51(14):3364.CrossRefGoogle Scholar
  45. [45]
    Pullen S, Fei H, Orthaber A, Cohen SM, Ott S. Enhanced photochemical hydrogen production by a molecular diiron catalyst incorporated into a metal-organic framework. J Am Chem Soc. 2013;135(45):16997.CrossRefGoogle Scholar
  46. [46]
    Kim M, Cahill JF, Su Y, Prather KA, Cohen SM. Postsynthetic ligand exchange as a route to functionalization of ‘inert’ metal-organic frameworks. Chem Sci. 2012;3(1):126.CrossRefGoogle Scholar
  47. [47]
    Schaate A, Roy P, Godt A, Lippke J, Waltz F, Wiebcke M, Behrens P. Modulated synthesis of Zr-based metal-organic frameworks: from nano to single crystals. Chem Eur J. 2011;17(24):6643.CrossRefGoogle Scholar
  48. [48]
    Kim M, Cahill JF, Fei H, Prather KA, Cohen SM. Postsynthetic ligand and cation exchange in robust metal-organic frameworks. J Am Chem Soc. 2012;134(43):18082.CrossRefGoogle Scholar

Copyright information

© The Nonferrous Metals Society of China and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Chemical EngineeringFuzhou UniversityFuzhouChina
  2. 2.School of Chemical and Biomedical EngineeringNanyang Technological UniversitySingaporeSingapore
  3. 3.State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of MatterChinese Academy of SciencesFuzhouChina

Personalised recommendations