Advertisement

Rare Metals

pp 1–13 | Cite as

Corrosion resistance of Mg(OH)2/Mg–Al-layered double hydroxide coatings on magnesium alloy AZ31: influence of hydrolysis degree of silane

  • Qing-Song Yao
  • Zhong-Chao Li
  • Zai-Meng Qiu
  • Fen ZhangEmail author
  • Xiao-Bo Chen
  • Dong-Chu Chen
  • Shao-Kang Guan
  • Rong-Chang ZengEmail author
Article
  • 25 Downloads

Abstract

Mg(OH)2/Mg–Al-layered double hydroxide (LDH) coatings were modified with methyltrimethoxysilane (MTMS) on magnesium alloys. Effect of hydrolysis degree of silane solution on coating formation was investigated. Chemical compositions and surface morphologies of the coatings were examined using X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS) and field-emission scanning electronic microscopy (FESEM). Results indicated that the composite coatings consisted of polymethyltrimethoxysilane (PMTMS), LDH and Mg(OH)2. Electrochemical and hydrogen evolution measurements revealed that the composite coatings possessed good corrosion resistance, especially the ones prepared in a high hydrolysis degree of silane. The optimum corrosion resistance of the composite coating was LDH/PMTMS-3 coating, which had the lowest value of corrosion current density (5.537 × 10−9 A·cm−2) and a dense surface. Plausible mechanism for coating formation and corrosion process of MTMS-modified Mg(OH)2/Mg–Al-LDH coatings were discussed.

Keywords

Magnesium alloy Layered double hydroxide (LDH) Silane Coating Corrosion resistance 

Notes

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Nos. 51601108 and 51571134), the Natural Science Foundation of Shandong Province (No. 2016ZRB01A62), the Shandong University of Science and Technology Research Fund (No. 2014TDJH104) and the Opening Fund of Ministry-Province Jointly Constructed Cultivation Base for State Key Laboratory of Processing for Non-ferrous Metal and Featured Materials.

References

  1. [1]
    Ivanou DK, Starykevich M, Lisenkov AD, Zheludkevich ML, Xue HB, Lamaka SV, Ferreira MGS. Plasma anodized ZE41 magnesium alloy sealed with hybrid epoxy-silane coating. Corros Sci. 2013;73(2):300.CrossRefGoogle Scholar
  2. [2]
    Jiang N, Meng LG, Zhang XG, Chen L, Fang CF, Hao H. Microstructure and mechanical properties of Gd-modified AZ80 magnesium alloys. Rare Met. 2017.  https://doi.org/10.1007/s12598-016-0868-3.Google Scholar
  3. [3]
    Abatti GP, Pires ATN, Spinelli A, Scharnagl N, Conceição TFD. Conversion coating on magnesium alloy sheet (AZ31) by vanillic acid treatment: preparation, characterization and corrosion behavior. J Alloys Compd. 2018;738:224.CrossRefGoogle Scholar
  4. [4]
    Xie ZR, Zhang C, Pan HC, Wang YX, Ren YP, Qin GW. Microstructures and bio-corrosion resistances of as-extruded Mg–Ca alloys with ultra-fine grain size. Rare Met. 2017.  https://doi.org/10.1007/s12598-017-0945-2.Google Scholar
  5. [5]
    Cui LY, Fang XH, Cao W, Zeng RC, Li SQ, Chen XB, Zou YH, Guan SK, Han EH. In vitro corrosion resistance of a layer-by-layer assembled DNA coating on magnesium alloy. Appl Surf Sci. 2018;457:49.CrossRefGoogle Scholar
  6. [6]
    Peng F, Li H, Wang DH, Tian P, Tian YX, Yuan GY, Xu DM, Liu XY. Enhanced corrosion resistance and biocompatibility of magnesium alloy by Mg–Al-layered double hydroxide. ACS Appl Mater Interfaces. 2016;8(51):35033.CrossRefGoogle Scholar
  7. [7]
    Li LY, Cui LY, Liu B, Zeng RC, Chen XB, Li SQ, Wang ZL, Han EH. Corrosion resistance of glucose-induced hydrothermal calcium phosphate coating on pure magnesium. Appl Surf Sci. 2019;465:1066.CrossRefGoogle Scholar
  8. [8]
    Cui LY, Wei GB, Han ZZ, Zeng RC, Wang L, Zou YH, Li SQ, Xu DK, Guan SK. In vitro corrosion resistance and antibacterial performance of novel tin dioxide-doped calcium phosphate coating on degradable Mg–1Li–1Ca alloy. J Mater Sci Technol. 2019;35(3):254.CrossRefGoogle Scholar
  9. [9]
    Forno AD, Bestetti M, Trasatti S, Trueba M. Properties of oxide-silane composite coating on AZ31 magnesium alloy. Trans Inst Met Finish. 2013;91(5):275.CrossRefGoogle Scholar
  10. [10]
    Khalifeh S, Burleigh TD. Super-hydrophobic stearic acid layer formed on anodized high purified magnesium for improving corrosion resistance of bioabsorbable implants. J Magnesium Alloys. 2018;6(4):327.CrossRefGoogle Scholar
  11. [11]
    Tang H, Gao Y. Preparation and characterization of hydroxyapatite containing coating on AZ31 magnesium alloy by micro-arc oxidation. J Alloys Compd. 2016;688:699.CrossRefGoogle Scholar
  12. [12]
    Cui LY, Hu Y, Zeng RC, Yang YX, Sun DD, Li SQ, Zhang F, Han EH. New insights into the effect of Tris-HCl and Tris on corrosion of magnesium alloy in presence of bicarbonate, sulfate, hydrogen phosphate and dihydrogen phosphate ions. J Mater Sci Technol. 2017;33(9):971.CrossRefGoogle Scholar
  13. [13]
    Arrabal R, Mota JM, Criado A, Pardo A, Mohedano M, Matykina E. Assessment of duplex coating combining plasma electrolytic oxidation and polymer layer on AZ31 magnesium alloy. Surf Coat Technol. 2012;206(22):4692.CrossRefGoogle Scholar
  14. [14]
    Li LY, Cui LY, Zeng RC, Li SQ, Chen XB, Zheng YF, Kannan MB. Advances in functionalized polymer coatings on biodegradable magnesium alloys—a review. Acta Biomater. 2018;79:23.CrossRefGoogle Scholar
  15. [15]
    Fang CJ, Zhang XL, Lei Y, Yuan Y, Xiang Y. Nitrogen removal via core–shell bio-ceramic/Zn-layer double hydroxides synthesized with different composites for domestic wastewater treatment. J Clean Prod. 2018;181:618.CrossRefGoogle Scholar
  16. [16]
    Costa FR, Wagenknecht U, Heinrich G. LDPE/Mg–Al layered double hydroxide nanocomposite: thermal and flammability properties. Polym Degrad Stab. 2007;92(10):1813.CrossRefGoogle Scholar
  17. [17]
    Hayatdavoudi H, Rahsepar M. Smart inhibition action of layered double hydroxide nanocontainers in zinc-rich epoxy coating for active corrosion protection of carbon steel substrate. J Alloys Compd. 2017;711:560.CrossRefGoogle Scholar
  18. [18]
    Kamiyama N, Panomsuwan G, Yamamoto E, Sudare T, Saito N, Ishizaki T. Effect of treatment time in the Mg(OH)2/Mg–Al LDH composite film formed on Mg alloy AZ31 by steam coating on the corrosion resistance. Surf Coat Technol. 2016;286(7):172.CrossRefGoogle Scholar
  19. [19]
    Guo L, Wu W, Zhou YF, Zhang F, Zeng RC, Zeng JM. Layered double hydroxide coatings on magnesium alloys: a review. J Mater Sci Technol. 2018;34(9):1455.CrossRefGoogle Scholar
  20. [20]
    Zhang M, Cai S, Shen S, Xu G, Li Y, Ling R, Wu X. In-situ defect repairing in hydroxyapatite/phytic acid hybrid coatings on AZ31 magnesium alloy by hydrothermal treatment. J Alloys Compd. 2016;658:649.CrossRefGoogle Scholar
  21. [21]
    Zhang CL, Zhang F, Song L, Zeng RC, Li SQ, Han EH. Corrosion resistance of a superhydrophobic surface on micro-arc oxidation coated Mg–Li–Ca alloy. J Alloys Compd. 2017;728:815.CrossRefGoogle Scholar
  22. [22]
    Hao L, Yan TT, Zhang YM, Zhao XH, Lei XD, Xu SL, Zhang FZ. Fabrication and anticorrosion properties of composite films of silica/layered double hydroxide. Surf Coat Technol. 2017;326:200.CrossRefGoogle Scholar
  23. [23]
    Soliveri G, Meroni D, Cappelletti G, Annunziata R, Aina V, Cerrato G, Ardizzone S. Engineered organic/inorganic hybrids for superhydrophobic coatings by wet and vapour procedures. J Mater Sci. 2014;49(7):2734.CrossRefGoogle Scholar
  24. [24]
    Ding CD, Liu Y, Wang MD, Wang T, Fu JJ. Self-healing, superhydrophobic coating based on mechanized silica nanoparticles for reliable protection of magnesium alloys. J Mater Chem A. 2016;4(21):8041.CrossRefGoogle Scholar
  25. [25]
    Yao QS, Zhang F, Song L, Zeng RC, Cui LY, Li SQ, Wang ZL, Han EH. Corrosion resistance of a ceria/polymethyltrimethoxysilane modified Mg–Al-layered double hydroxide on AZ31 magnesium alloy. J Alloys Compd. 2018;764:913.CrossRefGoogle Scholar
  26. [26]
    Yuan X, Yue ZF, Chen X, Wen SF, Li L, Feng T. The protective and adhesion properties of silicone-epoxy hybrid coatings on 2024 Al-alloy with a silane film as pretreatment. Corros Sci. 2016;104:84.CrossRefGoogle Scholar
  27. [27]
    Zanotto F, Grassi V, Frignani A, Zucchi F. Protection of the AZ31 magnesium alloy with cerium modified silane coatings. Mater Chem Phys. 2011;129(1–2):1.CrossRefGoogle Scholar
  28. [28]
    Palomino LEM, Suegama PH, Aoki IV, Pászti Z, Melo HGD. Investigation of the corrosion behaviour of a bilayer cerium-silane pre-treatment on Al 2024-T3 in 0.1 M NaCl. Electrochim Acta. 2007;52(27):7496.CrossRefGoogle Scholar
  29. [29]
    Díaz-Benito B, Velasco F, Martínez FJ, Encinas N. Hydrolysis study of bis-1,2-(triethoxysilyl)ethane silane by NMR. Colloids Surf A Physicochem Eng Aspects. 2011;369(1):53.Google Scholar
  30. [30]
    Franquet A, Biesemans M, Terryn H, Willem R, Vereecken J. Study of the interaction of hydrolysed silane solutions with pre-treated aluminium substrates. Surf Interface Anal. 2006;38(4):172.CrossRefGoogle Scholar
  31. [31]
    Salon MCB, Abdelmouleh M, Boufi S, Belgacem MN, Gandini A. Silane adsorption onto cellulose fibers: hydrolysis and condensation reactions. J Colloid Interface Sci. 2005;289(1):249.CrossRefGoogle Scholar
  32. [32]
    Ciobotaru IA, Maior I, Vaireanu DI, Cojocaru A, Caprarescu S, Ciobotaru IE. The determination of the optimum hydrolysis time for silane films deposition. Appl Surf Sci. 2016;371:275.CrossRefGoogle Scholar
  33. [33]
    Abel ML, Allington RD, Digby RP, Porritt N, Shaw SJ, Watts JF. Understanding the relationship between silane application conditions, bond durability and locus of failure. Int J Adhes Adhes. 2006;26(1):2.CrossRefGoogle Scholar
  34. [34]
    Pantoja M, Díaz-Benito B, Velasco F, Abenojar J, Real JCD. Analysis of hydrolysis process of γ-methacryloxypropyltrimethoxysilane and its influence on the formation of silane coatings on 6063 aluminum alloy. Appl Surf Sci. 2009;255(12):6386.CrossRefGoogle Scholar
  35. [35]
    Rubio J, Mazo MA, Martín-Ilana A, Tamayo A. FT-IR study of the hydrolysis and condensation of 3-(2-amino-ethylamino)propyl-trimethoxy silane. Bol Soc Esp Ceram Vidrio. 2018;57(4):160.CrossRefGoogle Scholar
  36. [36]
    Arjunan V, Thirunarayanan S, Mohan S. Energy profile, spectroscopic (FT-IR, FT-Raman and FT-NMR) and DFT studies of 4-bromoisophthalic acid. J Mol Struct. 2018;1157:132.CrossRefGoogle Scholar
  37. [37]
    Eaton P, Holmes P, Yarwood J. In situ and ex situ FTIR-ATR and Raman microscopic studies of organosilane hydrolysis and the effect of hydrolysis on silane diffusion through a polymeric film. J Appl Polym Sci. 2001;82(8):2016.CrossRefGoogle Scholar
  38. [38]
    Salon MC, Gerbaud G, Abdelmouleh M, Bruzzese C, Boufi S, Belgacem MN. Studies of interactions between silane coupling agents and cellulose fibers with liquid and solid-state NMR. Magn Reson Chem. 2007;45(6):473.CrossRefGoogle Scholar
  39. [39]
    Franquet A, Biesemans M, Willem R, Terryn H, Vereecken J. Multinuclear 1D- and 2D-NMR study of the hydrolysis and condensation of bis-1,2-(triethoxysilyl)ethane. J Adhes Sci Technol. 2004;18(7):765.CrossRefGoogle Scholar
  40. [40]
    Castellano M, Gandini A, Fabbri P, Belgacem MN. Modification of cellulose fibres with organosilanes: under what conditions does coupling occur? J Colloid Interface Sci. 2004;273(2):505.CrossRefGoogle Scholar
  41. [41]
    Cabral AM, Duarte RG, Montemor MF, Ferreira MGS. A comparative study on the corrosion resistance of AA2024-T3 substrates pre-treated with different silane solutions: composition of the films formed. Prog Org Coat. 2005;54(4):322.CrossRefGoogle Scholar
  42. [42]
    Zhao YB, Zhang Z, Shi LQ, Zhang F, Li SQ, Zeng RC. Corrosion resistance of a self-healing multilayer film based on SiO2 and CeO2 nanoparticles layer-by-layer assembly on Mg alloys. Mater Lett. 2019;237:14.CrossRefGoogle Scholar
  43. [43]
    Guo L, Zhang F, Song L, Zeng RC, Li SQ, Han EH. Corrosion resistance of ceria/polymethyltrimethoxysilane modified magnesium hydroxide coating on AZ31 magnesium alloy. Surf Coat Technol. 2017;328:121.CrossRefGoogle Scholar
  44. [44]
    Yeganeh M, Mohammadi N. Superhydrophobic surface of Mg alloys: a review. J Magnesium Alloys. 2018;6(1):59.CrossRefGoogle Scholar
  45. [45]
    Alibakhshi E, Ghasemi E, Mahdavian M, Ramezanzadeh B, Farashi S. Active corrosion protection of Mg–Al–PO4 3− LDH nanoparticle in silane primer coated with epoxy on mild steel. J Taiwan Inst Chem Eng. 2017;75:248.CrossRefGoogle Scholar
  46. [46]
    Guo L, Zhang F, Lu JC, Zeng RC, Li SQ, Song L, Zeng JM. A comparison of corrosion inhibition of magnesium aluminum and zinc aluminum vanadate intercalated layered double hydroxides on magnesium alloys. Front Mater Sci. 2018;12(2):198.CrossRefGoogle Scholar
  47. [47]
    Wojciechowski J, Szubert K, Peipmann R, Fritz M, Schmidt U, Bund A, Lota G. Anti-corrosive properties of silane coatings deposited on anodised aluminium. Electrochim Acta. 2016;220:1.CrossRefGoogle Scholar
  48. [48]
    Zhao D, Bai Z, Zhao F. Preparation of Mg/Al-LDHs intercalated with dodecanoic acid and investigation of its antiwear ability. Mater Res Bull. 2012;47(11):3670.CrossRefGoogle Scholar
  49. [49]
    Lei L, Shi J, Wang X, Liu D, Xu HG. Microstructure and electrochemical behavior of cerium conversion coating modified with silane agent on magnesium substrates. Appl Surf Sci. 2016;376:161.CrossRefGoogle Scholar
  50. [50]
    Zhang F, Liu ZG, Zeng RC, Li SQ, Cui HZ, Song L, Han EH. Corrosion resistance of Mg–Al-LDH coating on magnesium alloy AZ31. Surf Coat Technol. 2014;258:1152.CrossRefGoogle Scholar
  51. [51]
    Cui LY, Gao SD, Li PP, Zeng RC, Zhang F, Li SQ, Han EH. Corrosion resistance of a self-healing micro-arc oxidation/polymethyltrimethoxysilane composite coating on magnesium alloy AZ31. Corros Sci. 2017;118:84.CrossRefGoogle Scholar
  52. [52]
    Zhang X, Wang ZH, Zhou ZH, Xu JM, Zhong ZJ, Yuan HL. Corrosion behavior of Al–3.0 wt%Mg alloy in NaCl solution under magnetic field. Rare Met. 2017;36(8):627.CrossRefGoogle Scholar
  53. [53]
    Arkles B, Steinmetz JR, Zazyczny J, Mehta P. Factors contributing to the stability of alkoxysilanes in aqueous solution. J Adhes Sci Technol. 1992;6(1):193.CrossRefGoogle Scholar
  54. [54]
    Zeng RC, Li XT, Liu ZG, Zhang F, Li SQ, Cui HZ. Corrosion resistance of Zn–Al layered double hydroxide/poly(lactic acid) composite coating on magnesium alloy AZ31. Front Mater Sci. 2015;9(4):355.CrossRefGoogle Scholar
  55. [55]
    Zhang F, Zhang CL, Zeng RC, Song L, Guo L, Huang XW. Corrosion resistance of the superhydrophobic Mg(OH)2/Mg–Al layered double hydroxide coatings on magnesium alloys. Metals. 2016;6(4):85.CrossRefGoogle Scholar
  56. [56]
    Zhang F, Zhang CL, Song L, Zeng RC, Liu ZG, Cui HZ. Corrosion of in situ grown MgAl-LDH coating on aluminum alloy. Trans Nonferrous Met Soc China. 2015;25(10):3498.CrossRefGoogle Scholar
  57. [57]
    Ding ZY, Cui LY, Chen XB, Zeng RC, Guan SK, Li SQ, Zhang F, Zou YH, Liu QY. In vitro corrosion of micro-arc oxidation coating on Mg–1Li–1Ca alloy—the influence of intermetallic compound Mg2Ca. J Alloys Compd. 2018;764:250.CrossRefGoogle Scholar
  58. [58]
    Ji RN, Liu CX, Zhang J, Zhang SG, Zhang L, Lian Y. Hydrophobicity and tribological properties of Al2O3/PTFE composite coating. Rare Met. 2018.  https://doi.org/10.1007/s12598-018-1149-0.Google Scholar
  59. [59]
    Zeng RC, Cui LY, Ke W. Biomedical magnesium alloys: composition, microstructure and corrosion. Acta Metall Sin. 2018;54(9):1215.Google Scholar

Copyright information

© The Nonferrous Metals Society of China and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.College of Materials Science and EngineeringShandong University of Science and TechnologyQingdaoChina
  2. 2.School of EngineeringRMIT UniversityCarltonAustralia
  3. 3.School of Materials Science and Energy EngineeringFoshan UniversityFoshanChina
  4. 4.School of Materials Science and EngineeringZhengzhou UniversityZhengzhouChina

Personalised recommendations