Skip to main content
Log in

Synergetic effect of BiOCl/Bi12O17Cl2 and MoS2: in situ DRIFTS investigation on photocatalytic NO oxidation pathway

  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

The BiOCl/Bi12O17Cl2@MoS2 (BOC-MS) composites were successfully synthesized by a facile method at room temperature. The physicochemical properties of the as-obtained samples were characterized by X-ray diffractometer (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), ultraviolet–visible diffuse reflection spectra (UV–Vis DRS), photoluminescence (PL), Brunauer–Emmett–Teller–Barrett–Joyner–Halenda (BET–BJH), and electron spin resonance (ESR) in detail. Moreover, the in situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) was applied to elucidate the adsorption and photocatalytic reaction mechanism. The optimized BOC-MS-1.0 composites exhibited excellent visible light photocatalytic capability (51.1%) and photochemical stability for removal of NO. Based on the DMPO-ESR spin trapping, the ·O2 radicals and ·OH radicals were identified as the main active species generated from BOC-MS-1.0 under visible light irradiation. The enhanced photocatalytic performance can be ascribed to the positive synergetic effect of the MoS2 and the effective carrier separation ability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Khodayari A, Vitt F, Phoenix D, Wuebbles DJ. The impact of NOx emissions from lightning on the production of aviation-induced ozone. Atmos Environ. 2018;187(5):410.

    Article  Google Scholar 

  2. Zhou Z, Harold MP, Luss D. NOx reduction on Ceria: impact of lean-rich cycling. Appl Catal B Environ. 2019;240(1):79.

    Article  Google Scholar 

  3. Guan Z, Ren J, Chen D, Hong L, Li F, Wang D, Ouyang Y, Gao Y. NOx removal by non-thermal plasma at low temperatures with amino groups additives. Korean J Chem Eng. 2016;33(11):3102.

    Article  Google Scholar 

  4. Zheng M, Li C, Liu S, Gui M, Ni J. Potential application of aerobic denitrifying bacterium Pseudomonas aeruginosa PCN-2 in nitrogen oxides (NOx) removal from flue gas. J Hazard Mater. 2016;318(7):571.

    Article  Google Scholar 

  5. Miao H, Yang J, Wei Y, Li W, Zhu Y. Visible-light photocatalysis of PDI nanowires enhanced by plasmonic effect of the gold nanoparticles. Appl Catal B Environ. 2018;239(12):61.

    Article  Google Scholar 

  6. Wang J, Wang C, Zhu S, Luo X, Li Z, Xu L. Benzohydroxamic acid photodegradation by prepared Ce modified TiO2. Chin J Rare Metals. 2018;42(4):393.

    Google Scholar 

  7. Ran J, Zhang J, Yu J, Jaroniec M, Qiao S. Earth-abundant cocatalysts for semiconductor-based photocatalytic water splitting. Chem Soc Rev. 2014;43(22):7787.

    Article  Google Scholar 

  8. Dong F, Xiong T, Sun Y, Lu L, Zhang Y, Zhang H, Huang H, Zhou Y, Wu Z. Exploring the photocatalysis mechanism on insulators. Appl Catal B Environ. 2017;219(12):450.

    Article  Google Scholar 

  9. Bi C, Cao J, Lina H, Wang Y, Chen S. Enhanced photocatalytic activity of Bi12O17Cl2 through loading Pt quantum dots as a highly efficient electron capturer. Appl Catal B Environ. 2016;195(10):132.

    Article  Google Scholar 

  10. He G, Xing C, Xiao X, Hu R, Zuo X, Nan J. Facile synthesis of flower-like Bi12O17Cl2/β-Bi2O3 composites with enhanced visible light photocatalytic performance for the degradation of 4-tert-butylphenol. Appl Catal B Environ. 2015;170–171(7):1.

    Google Scholar 

  11. Huang H, Xiao K, He Y, Zhang T, Dong F, Du X, Zhang Y. In situ assembly of BiOI@Bi12O17Cl2 p–n junction: charge induced unique front-lateral surfaces coupling heterostructure with high exposure of BiOI {001} active facets for robust and nonselective photocatalysis. Appl Catal B Environ. 2016;199(11):75.

    Article  Google Scholar 

  12. Xiao X, Jiang J, Zhang L. Selective oxidation of benzyl alcohol into benzaldehyde over semiconductors under visible light: the case of Bi12O17Cl2 nanobelts. Appl Catal B Environ. 2013;141–143(5):487.

    Article  Google Scholar 

  13. Zhang W, Dong X, Jia B, Zhong J, Sun Y, Dong F. 2D BiOCl/Bi12O17Cl2 nanojunction: enhanced visible light photocatalytic NO removal and in situ DRIFTS investigation. Appl Surf Sci. 2018;430(2):571.

    Article  Google Scholar 

  14. Zhang W, Dong X, Liang Y, Sun Y, Dong F. Ag/AgCl nanoparticles assembled on BiOCl/Bi12O17Cl2 nanosheets: enhanced plasmonic visible light photocatalysis and in situ DRIFTS investigation. Appl Surf Sci. 2018;455(10):236.

    Article  Google Scholar 

  15. Xiong T, Wen M, Dong F, Yu J, Han L, Lei B, Zhang Y, Tang X, Zang Z. Three dimensional Z-scheme (BiO)2CO3/MoS2 with enhanced visible light photocatalytic NO removal. Appl Catal B Environ. 2016;199(10):87.

    Article  Google Scholar 

  16. Xiang Q, Yu J, Jaroniec M. Synergetic effect of MoS2 and graphene as cocatalysts for enhanced photocatalytic H2 production activity of TiO2 nanoparticles. J Am Chem Soc. 2012;134(15):6575.

    Article  Google Scholar 

  17. Zhang W, Zhao Z, Dong F, Zhang Y. Solvent-assisted synthesis of porous g-C3N4 with efficient visible-light photocatalytic performance for NO removal. Chinese J Catal. 2017;38(2):372.

    Article  Google Scholar 

  18. Sun Y, Zhang W, Xiong T, Zhao Z, Dong F, Wang R. Growth of BiOBr nanosheets on C3N4 nanosheets to construct two-dimensional nanojunctions with enhanced photoreactivity for NO removal. J Colloid Interface Sci. 2014;418(3):317.

    Article  Google Scholar 

  19. Dong F, Bian J, Sun Y, Xiong T, Zhang W. The rapid synthesis of photocatalytic (BiO)2CO3 single-crystal nanosheets via an eco-friendly approach. CrystEngComm. 2014;16(17):3592.

    Article  Google Scholar 

  20. Zhang W, Zhang J, Dong F, Zhang Y. Facile synthesis of in situ phosphorus-doped g-C3N4 with enhanced visible light photocatalytic property for NO purification. RSC Adv. 2016;6(91):88085.

    Article  Google Scholar 

  21. Li Y, Wang H, Xie L, Liang Y, Hong G, Dai H. MoS2 nanoparticles grown on graphene: an advanced catalyst for the hydrogen evolution reaction. J Am Chem Soc. 2011;133(19):7296.

    Article  Google Scholar 

  22. Cheng C, Liu G, Kang Du, Li G, Zhang W, Sanna S, Chen Y, Pryds N, Wang K. Enhanced visible light catalytic activity of MoS2/TiO2/Ti photocathode by hybrid-junction. Appl Catal B Environ. 2018;237(12):416.

    Article  Google Scholar 

  23. Roy S, Choi W, Jeon S, Kim DH, Kim H, Yun SJ, Lee Y, Lee J, Kim Y, Kim J. Atomic observation of filling vacancies in monolayer transition metal sulfides by chemically sourced sulfur atoms. Nano Lett. 2018;18(7):4523.

    Article  Google Scholar 

  24. Eda G, Yamaguchi H, Voiry D, Fujita T, Chen M, Chhowalla M. Photoluminescence from chemically exfoliated MoS2. Nano Lett. 2011;11(12):5111.

    Article  Google Scholar 

  25. Feng X, Zhang W, Sun Y, Huang H, Dong F. Fe (III) cluster-grafted (BiO)2CO3 superstructures: in situ DRIFTS investigation on IFCT-enhanced visible light photocatalytic NO oxidation. Environ Sci Nano. 2017;4(3):604.

    Article  Google Scholar 

  26. Sivachandiran L, Thevenet F, Rousseau A, Bianchi D. NO2 adsorption mechanism on TiO2: an in situ transmission infrared spectroscopy study. Appl Catal B Environ. 2016;198(12):411.

    Article  Google Scholar 

  27. Weingand T, Kuba S, Hadjiivanov K, Knözinger H. Nature and reactivity of the surface species formed after NO adsorption and NO + O2 coadsorption on a WO3–ZrO2 catalyst. J Catal. 2002;209(2):539.

    Article  Google Scholar 

  28. Savara A, Weitz E. Elucidation of intermediates and mechanisms in heterogeneous catalysis using infrared spectroscopy. Annu Rev Phys Chem. 2014;265(1):49.

    Google Scholar 

  29. Wu JCS, Cheng YT. In situ FTIR study of photocatalytic NO reaction on photocatalysts under UV irradiation. J Catal. 2006;237(2):393.

    Article  Google Scholar 

  30. Kantcheva M. Identification, stability, and reactivity of NOx species adsorbed on titania-supported manganese catalysts. J Catal. 2001;204(2):479.

    Article  Google Scholar 

  31. Zhang W, Liu X, Dong X, Dong F, Zhang Y. Facile synthesis of Bi12O17Br2 and Bi4O5Br2 nanosheets: in situ DRIFTS investigation of photocatalytic NO oxidation conversion pathway. Chin J Catal. 2017;38(12):2030.

    Article  Google Scholar 

Download references

Acknowledgements

This research is financially supported by the National Natural Science Foundation of China (Nos. 51708078 and 41801063) and the Natural Science Foundation of Chongqing (No. 2018jcyjA1040).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wen-Dong Zhang or Fan Dong.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 3055 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, WD., Dong, XA., Liang, Y. et al. Synergetic effect of BiOCl/Bi12O17Cl2 and MoS2: in situ DRIFTS investigation on photocatalytic NO oxidation pathway. Rare Met. 38, 437–445 (2019). https://doi.org/10.1007/s12598-019-01230-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-019-01230-5

Keywords

Navigation