Advertisement

Rare Metals

pp 1–8 | Cite as

Microstructures and properties of Nb–Si-based alloys with B addition

  • Liang-Shun Luo
  • Fu-Xin Wang
  • Xian-Yu Meng
  • Yan-Jin Xu
  • Liang Wang
  • Yan-Qing SuEmail author
  • Jing-Jie Guo
  • Heng-Zhi Fu
Article
  • 35 Downloads

Abstract

The Nb–16Si–18Ti–xB (at%, similarly hereinafter, x = 0, 1, 2, 3) alloys were prepared by arc melting in a water-cooled copper crucible. The influences of B addition on their microstructures and properties were based on the data of X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), and electronic universal material testing machine. It is found that the addition of B promotes the formation of α-Nb5Si3 phase and suppresses the formation of Nb3Si phase. B addition also tends Nb–16Si–18Ti alloy to form the hypereutectic structures. The content of silicide phases shows a trend of firstly decreasing and then increasing in Nb–16Si–18Ti–xB (x = 0, 1, 2, 3) alloys. The size of Nb solid solution (Nbss) phase increases in Nb–16Si–18Ti–xB (x = 0, 1, 2, 3) alloys after heat treatment at 1523 K for 10 h. The room temperature compression strength of Nb–16Si–18Ti alloy increases firstly and then decreases with B addition. The high-temperature compression strength of Nb–16Si–18Ti alloy decreases firstly and then increases with B addition. It is found that the volume and size of silicide phases have a synergistic effect on the compression strength of Nb–Ti–Si-based alloys.

Keywords

Nb–Si alloys B element Phase stability Compression yield strength 

Notes

Acknowledgements

This study was financially supported by the National Natural Science Foundation of China (Nos. 51425402, 51405458, 51371066 and 51671073), the National Key Research and Development Program of China (No. 2016YFB0301201) and the Youth Science Foundation of Heilongjiang Province (No. QC2013C049).

References

  1. [1]
    Jackson MR, Bewlay BP, Rowe RG, Skelly DW, Lipsitt HA. High-temperature refractory metal–intermetallic composites. JOM. 1996;48(1):39.CrossRefGoogle Scholar
  2. [2]
    Bewlay BP, Jackson MR, Lipsitt HA. The balance of mechanical and environmental properties of a multielement niobium–niobium silicide-based in situ composite. Metall Mater Trans A. 1996;27(12):3801.CrossRefGoogle Scholar
  3. [3]
    Yamaguchi M, Inui H, Ito K. High-temperature structural intermetallics. Acta Mater. 2000;48(1):307.CrossRefGoogle Scholar
  4. [4]
    Henshall GA, Subramanian PR, Strum MJ, Mendiratta MG. Continuum predictions of deformation in composites with two creeping phases—II. Nb5Si3/Nb composites. Acta Metall Mater. 1997;45(8):3135.CrossRefGoogle Scholar
  5. [5]
    Zhang LT, Wu JS. Thermal expansion and elastic moduli of the silicide based intermetallic alloys Ti5Si3(X) and Nb5Si3. Scr Mater. 1997;38(2):307.CrossRefGoogle Scholar
  6. [6]
    Kajuch J, Short J, Lewandowski JJ. Deformation and fracture-behavior of Nb in Nb5Si3/Nb laminates and its effect on laminate toughness. Acta Metall Mater. 1995;43(5):1955.CrossRefGoogle Scholar
  7. [7]
    Cockeram B, Lipsitt HA, Srinivasan R, Weiss I. Phase relationships in Nb–18.7 a/o Si in situ composite. Scr Metall. 1991;25:2109.CrossRefGoogle Scholar
  8. [8]
    Bewlay BP, Jackson MR, Subramanian PR, Zhao JC. A review of very-high-temperature Nb-silicide-based composites. Metall Mater Trans A. 2003;34A(10):2043.CrossRefGoogle Scholar
  9. [9]
    Guo Y, Jia L, Kong B, Zhang H, Zhang H. Microstructure and fracture toughness of Nb–Si based alloys with Ta and W additions. Intermetallics. 2018;92:1.CrossRefGoogle Scholar
  10. [10]
    Zhang S, Jia L, Guo Y, Kong B, Zhang F, Zhang H. High-temperature oxidation behavior of Nb–Si-based alloy with separate vanadium, tantalum, tungsten and zirconium addition. Rare Met. 2017.  https://doi.org/10.1007/s12598-017-0916-7.CrossRefGoogle Scholar
  11. [11]
    Hong Z, Zhang H, Weng J, Su L, Li Z, Jia L. Oxidation behavior of Nb–24Ti–18Si–2Al–2Hf–4Cr and Nb–24Ti–18Si–2Al–2Hf–8Cr hypereutectic alloys at 1250 °C. Rare Met. 2017;36(3):168.CrossRefGoogle Scholar
  12. [12]
    Li Z, Yuan S, Jia L, Kong B, Hong Z, Zhang H. Microstructure evolution of eutectic Nb–24Ti–15Si–4Cr–2Al–2Hf alloy processed by directional solidification. Rare Met. 2017;36(6):472.CrossRefGoogle Scholar
  13. [13]
    Geng J, Tsakiropoulos P. A study of the microstructures and oxidation of Nb–Si–Cr–Al–Mo in situ composites alloyed with Ti, Hf and Sn. Intermetallics. 2007;15(3):382.CrossRefGoogle Scholar
  14. [14]
    Geng J, Tsakiropoulos P, Shao G. Oxidation of Nb–Si–Cr–Al in situ composites with Mo, Ti and Hf additions. Mater Sci Eng A. 2006;441(1–2):26.CrossRefGoogle Scholar
  15. [15]
    Kim JH, Tabaru T, Sakamoto M, Hanada S. Mechanical properties and fracture behavior of an Nbss/Nbss/Nb5Si3 in situ composite modified by Mo and Hf alloying. Mater Sci Eng A. 2004;372(1–2):137.CrossRefGoogle Scholar
  16. [16]
    Ma C, Tan Y, Kasama A, Hanada S. Phase Equilibria in Nb–W-rich zone of the Nb–W–Si ternary system. Mater Trans. 2002;4(43):688.CrossRefGoogle Scholar
  17. [17]
    Kim W, Tanaka H, Kasama A, Tanaka R, Hanada S. Microstructure and room temperature deformation of Nbss/Nb5Si3 in situ composites alloyed with Mo. Intermetallics. 2001;9(6):521.CrossRefGoogle Scholar
  18. [18]
    Zhang S, Guo X. Alloying effects on the microstructure and properties of Nb–Si based ultrahigh temperature alloys. Intermetallics. 2016;70:33.CrossRefGoogle Scholar
  19. [19]
    Joubert JM, Colinet C, Rodrigues G, Suzuki PA, Nunes CA, Coelho GC. The T-2 phase in the Nb–Si–B system studied by ab initio calculations and synchrotron X-ray diffraction. J Solid State Chem. 2012;190:111.CrossRefGoogle Scholar
  20. [20]
    Júnior DMP, Nunes CA, Coelho GC, Ferreira F. Liquidus projection of the Nb–Si–B system in the Nb-rich region. Intermetallics. 2003;11(3):251.CrossRefGoogle Scholar
  21. [21]
    Huang Q, Kang Y, Song J, Qu S, Han Y, Guo X. Effects of Ni Co, B, and Ge on the microstructures and mechanical properties of Nb–Ti–Si ternary alloys. Met Mater Int. 2014;20(3):475.CrossRefGoogle Scholar
  22. [22]
    Sun ZP, Guo XP, Tian XD, Zhou L. Microhardness and macrohardness of as-cast Nb–Ti–Si–B alloys. Rare Met Mater Eng. 2015;44(9):48.Google Scholar
  23. [23]
    Sha JB, Yip TH. In situ surface displacement analysis on sandwich and multilayer beams composed of aluminum foam core and metallic face sheets under bending loading. Mater Sci Eng A. 2004;386(1–2):91.CrossRefGoogle Scholar
  24. [24]
    Ma CL, Li JG, Tan Y, Tanaka R, Hanada S. Effect of B addition on the microstructures and mechanical properties of Nb–16Si–10Mo–15W alloy. Mater Sci Eng A. 2004;384(1–2):377.CrossRefGoogle Scholar
  25. [25]
    Zhang S, Guo X. Microstructural characteristics of Nb–Si based ultrahigh temperature alloys with B and Hf additions. Intermetallics. 2015;64:51.CrossRefGoogle Scholar
  26. [26]
    Guo Y, Jia L, Kong B, Zhang S, Sha J, Zhang H. Microstructure transition from lamellar eutectic to anomalous eutectic of Nb–Si based alloy powders by heat treatment and spark plasma sintering. J Alloys Compd. 2017;696:516.CrossRefGoogle Scholar
  27. [27]
    Ashby MF, Blunt FJ, Bannister M. Flow characteristics of highly constrained metal wires. Acta Metall. 1989;37(7):1847.CrossRefGoogle Scholar
  28. [28]
    Jia LN, Gao M, Gai RJ, Zheng L, Sha JB, Zhang H. Microstructure and properties of Nb–16Si–22Ti–2Hf–2Cr–2Al alloy by vacuum induction melting. Acta Mater Sin. 2011;47(1):88.Google Scholar
  29. [29]
    Subramanian PR, Mendiratta MG, Dimiduk DM, Stucke MA. Advanced intermetallic alloys—beyond gamma titanium aluminides. Mater Sci Eng A. 1997;239–240(12):1.CrossRefGoogle Scholar

Copyright information

© Journal Publishing Center of University of Science and Technology, Beijing and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Materials Science and EngineeringHarbin Institute of TechnologyHarbinChina
  2. 2.AVIC Manufacturing Technology InstituteBeijingChina

Personalised recommendations