Rare Metals

pp 1–6 | Cite as

In situ TiN-reinforced CoCr2FeNiTi0.5 high-entropy alloy composite coating fabricated by laser cladding

  • Ya-Xiong Guo
  • Qi-Bin Liu
  • Xiao-Juan Shang


The fcc structural CoCr2FeNiTi0.5 high-entropy alloy (HEA) composite coating with TiN particles reinforced was acquired by laser cladding on the commercial 904L stainless steels. The results show that phase structure is mainly composed of fcc solid solution and TiN phases. The coating exhibits excellent structural stability below 850 °C. The microstructure consists of irregular dendrite and TiN particles. Transmission electron microscopy (TEM) results reveal that the close-packed plane of fcc phase is (111) with interplanar spacing of ~ 0.208 nm. The interface between TiN and fcc matrix is semi-coherent. And the angle of boundary between dendrite and matrix is ~ 65°. The hardness and corrosion resistance of coating have much improvement compared with those of substrate.


TiN particle reinforced High-entropy alloy Semi-coherent interface Laser cladding 



This work was financially supported by the National Natural Science Foundation of China (No. 51671061), the High-Level Innovative Talents Plan of Guizhou Province (No. (2015)4009) and the Industrial Research Project of Guizhou Provincial Science and Technology Department (No. (2015)3022).


  1. [1]
    Miracle DB, Senkov ON. A critical review of high entropy alloys and related concepts. Acta Mater. 2017;122:448.CrossRefGoogle Scholar
  2. [2]
    Guo YX, Liu QB, Zhou F. Microstructure and wear resistance of high-melting-point ALCrFeMoNbxTiW high-entropy alloy coating by laser cladding. Chin J Rare Met. 2017;41:1327.Google Scholar
  3. [3]
    Wang Q, Ma Y, Jiang B, Li X, Shi Y, Dong C, Liaw PK. A cuboidal B2 nanoprecipitation-enhanced body-centered-cubic alloy Al0.7CoCrFe2Ni with prominent tensile properties. Scr Mater. 2016;120:85.CrossRefGoogle Scholar
  4. [4]
    Zhu JM, Meng JL, Liang JL. Microstructure and mechanical properties of multi-principal component AlCoCrFeNiCux alloy. Rare Met. 2016;35(5):385.CrossRefGoogle Scholar
  5. [5]
    Niu S, Kou H, Wang J, Li J. Improved tensile properties of Al0.5CoCrFeNi high-entropy alloy by tailoring microstructures. Rare Met. 2017. Scholar
  6. [6]
    Senkov ON, Senkova SV, Woodward C. Effect of aluminum on the microstructure and properties of two refractory high-entropy alloys. Acta Mater. 2014;68:214.CrossRefGoogle Scholar
  7. [7]
    Juan C, Tsai M, Tsai C, Lin C, Wang W, Yang C, Chen S, Lin S, Yeh J. Enhanced mechanical properties of HfMoTaTiZr and HfMoNbTaTiZr refractory high-entropy alloys. Intermetallics. 2015;62:76.CrossRefGoogle Scholar
  8. [8]
    Zhao YJ, Qiao JW, Ma SG, Gao MC, Yang HJ, Chen MW, Zhang Y. A hexagonal close-packed high-entropy alloy: the effect of entropy. Mater Des. 2016;96:10.CrossRefGoogle Scholar
  9. [9]
    Takeuchi A, Amiya K, Wada T, Yubuta K. Dual HCP structures formed in senary ScYLaTiZrHf multi-principal-element alloy. Intermetallics. 2016;69:103.CrossRefGoogle Scholar
  10. [10]
    Zhang Y, Zuo TT, Tang Z, Gao MC, Dahmen KA, Liaw PK, Lu ZP. Microstructures and properties of high-entropy alloys. Prog Mater Sci. 2014;61(8):1.CrossRefGoogle Scholar
  11. [11]
    Wang WR, Wang WL, Yeh JW. Phases, microstructure and mechanical properties of AlxCoCrFeNi high-entropy alloys at elevated temperatures. J Alloys Compd. 2014;589(9):143.CrossRefGoogle Scholar
  12. [12]
    Lu Y, Dong Y, Guo S, Li J, Kang H, Wang T, Wen B, Wang Z, Jie J, Cao Z. A promising new class of high-temperature alloys: eutectic high-entropy alloys. Sci Rep. 2014;4:6200.CrossRefGoogle Scholar
  13. [13]
    Moon J, Qi Y, Tabachnikova E, Estrin Y, Choi W, Joo S, Lee B, Podolskiy A, Tikhonovsky M, Kim HS. Deformation-induced phase transformation of Co20Cr26Fe20Mn20Ni14 high-entropy alloy during high-pressure torsion at 77K. Mater Lett. 2017;202:86.CrossRefGoogle Scholar
  14. [14]
    Ma SG, Zhang Y. Effect of Nb addition on the microstructure and properties of AlCoCrFeNi high-entropy alloy. Mater Sci Eng, A. 2012;532(1):480.CrossRefGoogle Scholar
  15. [15]
    Fu Z, Chen W, Wen H, Zhang D, Chen Z, Zheng B, Zhou Y, Lavernia EJ. Microstructure and strengthening mechanisms in an FCC structured single-phase nanocrystalline Co25Ni25Fe25Al75Cu175 high-entropy alloy. Acta Mater. 2016;107:59.CrossRefGoogle Scholar
  16. [16]
    Hemphill MA, Yuan T, Wang GY, Yeh JW, Tsai CW, Chuang A, Liaw PK. Fatigue behavior of Al0.5CoCrCuFeNi high entropy alloys. Acta Mater. 2012;60(16):5723.CrossRefGoogle Scholar
  17. [17]
    Chuang M, Tsai M, Wang W, Lin S, Yeh J. Microstructure and wear behavior of AlxCo1.5CrFeNi1.5Tiy high-entropy alloys. Acta Mater. 2011;59(16):6308.CrossRefGoogle Scholar
  18. [18]
    Wu CL, Zhang S, Zhang CH, Zhang H, Dong SY. Phase evolution and cavitation erosion-corrosion behavior of FeCoCrAlNiTix high entropy alloy coatings on 304 stainless steel by laser surface alloying. J Alloys Compd. 2017;698:761.CrossRefGoogle Scholar
  19. [19]
    Yeh JW, Chen SK, Lin SJ, Gan JY, Chin TS, Shun TT, Tsau CH, Chang SY. Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes. Adv Eng Mater. 2004;6(5):299.CrossRefGoogle Scholar
  20. [20]
    Stepanov ND, Yurchenko NY, Panina ES, Tikhonovsky MA, Zherebtsov SV. Precipitation-strengthened refractory Al0.5CrNbTi2V0.5 high entropy alloy. Mater Lett. 2017;188:162.CrossRefGoogle Scholar
  21. [21]
    Gwalani B, Choudhuri D, Soni V, Ren Y, Styles M, Hwang JY, Nam SJ, Ryu H, Hong SH, Banerjee R. Cu assisted stabilization and nucleation of L12 precipitates in Al0.3CuFeCrNi2 fcc-based high entropy alloy. Acta Mater. 2017;129:170.CrossRefGoogle Scholar
  22. [22]
    Huang C, Tang YZ, Zhang YZ, Dong AP, Tu J, Chai LJ, Zhou ZM. Microstructure and dry sliding wear behavior of laser clad AlCrNiSiTi multi-principal element alloy coatings. Rare Met. 2017;36(7):562.CrossRefGoogle Scholar
  23. [23]
    Hu LF, Li J, Lv YH, Tao YF. Corrosion behavior of laser-clad coatings fabricated on Ti6Al4V with different contents of TaC addition. Rare Met. 2017. Scholar
  24. [24]
    Zhang M, Zhou X, Yu X, Li J. Synthesis and characterization of refractory TiZrNbWMo high-entropy alloy coating by laser cladding. Surf Coat Technol. 2017;311:321.CrossRefGoogle Scholar
  25. [25]
    Zhang H, Ye P, He Y, Jiao H. Microstructure and properties of 6FeNiCoSiCrAlTi high-entropy alloy coating prepared by laser cladding. Appl Surf Sci. 2011;257(6):2259.CrossRefGoogle Scholar
  26. [26]
    Huang C, Zhang Y, Rui V, Shen J. Dry sliding wear behavior of laser clad TiVCrAlSi high entropy alloy coatings on Ti–6Al–4V substrate. Mater Des. 2012;41:338.CrossRefGoogle Scholar
  27. [27]
    Gong FB, Shen J, Gao RH, Zhang T, Xie X, Yang LI. Influence of heat treatment on microstructure and mechanical properties of FeCrNi coating produced by laser cladding. Trans Nonferr Met Soc. 2016;26(8):2117.CrossRefGoogle Scholar
  28. [28]
    Bartkowski D, Kinal G. Microstructure and wear resistance of Stellite-6/WC MMC coatings produced by laser cladding using Yb:yAG disk laser. Int J Refract Met Hard. 2016;58:157.CrossRefGoogle Scholar
  29. [29]
    Abioye TE, Mccartney DG, Clare AT. Laser cladding of Inconel 625 wire for corrosion protection. J Mater Process Technol. 2015;217:232.CrossRefGoogle Scholar
  30. [30]
    Wrobel JS, Nguyenmanh D, Lavrentiev MY, Muzyk M, Dudarev SL. Phase stability of ternary fcc and bcc Fe–Cr–Ni alloys. Phys Rev B. 2014;91(2):24108.CrossRefGoogle Scholar
  31. [31]
    Arslan E, Efeoğlu İ. Effect of heat treatment on TiN films deposited by CFUBMS. Mater Charact. 2004;53(1):29.CrossRefGoogle Scholar

Copyright information

© The Nonferrous Metals Society of China and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.College of Materials and MetallurgyGuizhou UniversityGuiyangChina
  2. 2.Guizhou Province Key Laboratory of Materials Structure and StrengthGuiyangChina

Personalised recommendations