Rare Metals

pp 1–8 | Cite as

Pressure-induced magnetic transition in Nd2Fe14B based on two-sublattice model

  • Feng Lu
  • Shuo XuEmail author
  • Li-hua Wang


To analyze the magnetic properties of Nd2Fe14B compound under high pressure, an improved two-sublattice molecular field model coupled with equivalent stress field was applied to study the effect of pressure on magnetization, magnetostriction coefficient, susceptibility and Curie temperature. The calculation results show that the pressure has a stronger effect on the magnetization of Fe sublattice compared to that of Nd sublattice at varied temperatures when the external magnetic field is parallel to the alignment direction. Saturated magnetization, initial susceptibility and magnetic moment of Nd2Fe14B compound are found to decrease gradually with pressure increasing, and the Curie temperature of Nd2Fe14B decreases to about 298 K under an applied pressure of 1.15 GPa. The results suggest that the pressure-induced magnetic phase transition of Nd2Fe14B occurs under 1.15 GPa at room temperature.


Magnetization Curie temperature Molecular field theory Nd2Fe14



This study was financially supported by the National Natural Science Foundation of China (No. 11072036).


  1. [1]
    Grady DE. Shock-induced anisotropy in ferromagnetic material: I. Domain-theory analysis of single-crystal behavior. J Appl Phys. 1972;43(4):1942.Google Scholar
  2. [2]
    Grady DE. Shock-induced anisotropy in ferromagnetic material: II. Polycrystalline behavior and experimental results for YIG. J Appl Phys. 1972;43(4):1948.Google Scholar
  3. [3]
    Ishizuka M, Terai M, Endo S, Hidaka M, Yamada I, Shimomura O. Pressure-induced magnetic phase transition in the two-dimensional heisenberg ferromagnet K2CuF4. J Magn Magn Mater. 1998;177–181(1):725.Google Scholar
  4. [4]
    Iwamoto T, Mito M, Hidaka M, Kawae T, Takeda K. Magnetic measurement of rare earth ferromagnet gadolinium under high pressure. Physica B. 2003;329–333(1):667.Google Scholar
  5. [5]
    Arnold Z, Kamarad J, Skorokhoda Y, Hong NM, Thuy NP, Thang CV. Pressure induced changes of magnetic phase transitions in RCo4B compounds. J Magn Magn Mater. 2003;262(3):382.Google Scholar
  6. [6]
    Shkuratov SI, Talantsev EF, Dickens JC, Kristiansen M. Transverse shock wave demagnetization of Nd2Fe14B high-energy hard ferromagnetics. J Appl Phys. 2002;92(1):159.Google Scholar
  7. [7]
    Gerasimov EG, Mushnikov NV. Pressure effect on magnetic phase transitions in La0.75Sm0.25Mn2Si2. Phys Rev B. 2005;72(6):064446.Google Scholar
  8. [8]
    Maeda T, Mito M, Deguchi H, Takagi S, Kaneko W, Ohba M, Okawa H. Pressure effects on a dimetallic ferrimagnet [Mn(en)]3[Cr(CN)6]2·4H2O. Polyhedron. 2005;24(6):2497.Google Scholar
  9. [9]
    Mito M, Fujino M, Deguchi H, Takagi S, Fujita W, Awaga K. Pressure effects on an organic radical ferromagnet γ-phase BBDTA·GaCl4. Polyhedron. 2005;24(16):2501.Google Scholar
  10. [10]
    Bruck E, Kamarad J, Sechovsky V, Arnold Z, Tegus O, Boer FR. Pressure effects on the magnetocaloric properties of MnFeP1−xAsx. J Magn Magn Mater. 2007;310(2):e1008.Google Scholar
  11. [11]
    Ohba M, Kaneko W, Kitagawa S, Maeda T, Mito M. Pressure response of three-dimensional cyanide-bridged bimetallic magnets. J Am Chem Soc. 2008;130(13):4475.Google Scholar
  12. [12]
    Mito M, Komorida Y, Tsuruda H, Tse JS, Desgreniers S, Ohishi Y, Leitch AA, Cvrkalj K, Robertson CM, Oakley RT. Heavy atom ferromagnets under pressure: structural changes and the magnetic response. J Am Chem Soc. 2009;131(44):16012.Google Scholar
  13. [13]
    Xi BL, Fang G. Crystal plasticity behavior of single-crystal pure magnesium under plane-strain compression. Nat Commun Rare Met. 2017;36(7):541.Google Scholar
  14. [14]
    Tomita T, Kuga K, Uwatoko Y, Nakatsuji S. Pressure-induced magnetic transition exceeding 30 K in the Yb-based heavy fermion β-YbAlB4. Phys Rev B. 2016;94(24):245130.Google Scholar
  15. [15]
    Bin F, Jun H, Jie H, Jie H, Li WP. Flow hydrogen absorption of LaFe10.9Co0.8Si1.3 compound under constant low hydrogen gas pressure. Rare Met. 2018;37(3):243.Google Scholar
  16. [16]
    Sud’enkov YV, Sarnatskii VM, Smirnov IV. Orientation magnetic phase transition induced by shock loading of the Fe–Cr–Co alloy. Phys Solid State. 2017;59(2):287.Google Scholar
  17. [17]
    Zhang GQ, Zhang TA, Zhang Y, Lv GZ, Liu Y, Liu ZL. Pressure leaching of converter vanadium slag with waste titanium dioxide. Rare Met. 2016;35(7):576.Google Scholar
  18. [18]
    Zou T, Cao HB, Liu GQ, Peng J, Gottschalk M, Zhu M, Zhao Y, Leao JB, Tian W, Mao ZQ. Pressure-induced electronic and magnetic phase transitions in a Mott insulator: Ti-doped Ca3Ru2O7 bilayer ruthenate. Phys Rev B. 2016;94(4):041115.Google Scholar
  19. [19]
    Khasanov R, Guguchia Z, Amato A, Morenzoni E, Dong XL, Zhou F, Zhao ZX. Pressure-induced magnetic order in FeSe: a muon spin rotation study. Phys Rev B. 2017;95(18):180504.Google Scholar
  20. [20]
    Repaka DVM, Sharma V, Chanda A, Mahendiran R, Ramanujan RV. Pressure dependence of resistivity and magnetic properties in a Mn1.9Cr0.1Sb alloy. AIP Adv. 2017;7(12):125009.Google Scholar
  21. [21]
    Kumar SP, Sakthipandi K, Gayathiri R, Panday MS. Ferromagnetic-paramagnetic transition temperature in bulk and nanostructured La0.7SrxCa0.3−xMnO3 (x = 0.10, 0.15, and 0.20) manganite materials. Rare Met. 2017;36(6):501.Google Scholar
  22. [22]
    Shkuratov SI, Talantsev EF, Dickens JC, Kristiansen M. Ultracompact explosive-driven high-current source of primary power based on shock wave demagnetization of Nd2Fe14B hard ferromagnetics. J Appl Phys. 2002;73(7):2738.Google Scholar
  23. [23]
    Shkuratov SI, Talantsev EF, Dickens JC, Kristiansen M. Currents produced by explosive driven transverse shock wave ferromagnetic source of primary power in a coaxial single-turn seeding coil of a magnetocumulative generator. J Appl Phys. 2003;93(8):4529.Google Scholar
  24. [24]
    Shkuratov SI, Talantsev EF, Dickens JC, Kristiansen M. Longitudinal-shock-wave compression of Nd2Fe14B high-energy hard ferromagnet: the pressure-induced magnetic phase transition. Appl Phys Lett. 2003;82(8):1248.Google Scholar
  25. [25]
    Shkuratov SI, Talantsev EF, Baird J, Altgilbers LL. Miniature explosively driven high-current transverse-shock-wave ferromagnetic generators. IEEE Trans Plasma Sci. 2010;38(8):1784.Google Scholar
  26. [26]
    Herbst JF, Croat JJ. Magnetization of RFe3 Intermetallic compounds: molecular field theory analysis. J Appl Phys. 1982;53(6):4304.Google Scholar
  27. [27]
    Herbst JF, Croat JJ. Magnetization of R6Fe23 intermetallic compounds: molecular field theory analysis. J Appl Phys. 1984;55(8):3023.Google Scholar
  28. [28]
    Zhang ZW, Zhang XM, Ren SW, Han LP, Ni ZC, Liu ZY. Molecular field theory analysis of R2Fe17C (R = Pr, Nd, Gd, Tb, Dy, Ho, Er). J Magn Magn Mater. 2002;248(2):158.Google Scholar
  29. [29]
    Zhang XM, Huang RW, Zhang ZW. Molecular field theory analysis of R3Co11B4 compounds. J Magn Magn Mater. 2002;241(1):131.Google Scholar
  30. [30]
    Zhang ZW, Huang RW. Temperature dependence of the exchange field of R2Fe14B (R = Sm, Pr, Nd, Gd, Dy, Tb, Er, Ho, Tm, Lu) compounds. J Alloy Compd. 1992;185(2):363.Google Scholar
  31. [31]
    Ren SW, Zhang ZW, Liu Y. The molecular field theory analysis of RFe10V2Nx (R = Y, Nd, Sm, Gd, Dy, Er) intermetallic compounds. J Magn Magn Mater. 1995;139(1–2):175.Google Scholar
  32. [32]
    Prasongkit J, Tang IM. Exchange interactions in the intermetallic compounds GdCo4−xNixAl. J Magn Magn Mater. 2004;284(12):376.Google Scholar
  33. [33]
    Wang W, Xu HJ, Xu XM, Zhang YJ, Li F. High-field magnetic properties in Nd–Fe intermetallic compound. J Magn Magn Mater. 2013;331:225.Google Scholar
  34. [34]
    Benam MR. Study the magnetic structure of FeCl2·4H2O crystals by LTNO technique and molecular field theory. J Magn Magn Mater. 2005;290–291:1040.Google Scholar
  35. [35]
    To TBT, Sluckin TJ, Luckhurst GR. Molecular field theory for polar, biaxial bent-core nematics. Liq Cryst. 2016;43(10):1448.Google Scholar
  36. [36]
    To TBT, Sluckin TJ, Luckhurst GR. Molecular field theory for biaxial nematics formed from liquid crystal dimers and inhibited by the twist-bend nematic. Phys Chem Chem Phys. 2017;19(43):29321.Google Scholar
  37. [37]
    Johnston DC. Influence of classical anisotropy fields on the properties of Heisenberg antiferromagnets within unified molecular field theory. Phys Rev B. 2017;96(22):224428.Google Scholar
  38. [38]
    Givord D, Li HS, Moreau LM. Magnetic properties and crystal structure of Nd2Fe14B. Solid State Commun. 1984;50(6):497.Google Scholar
  39. [39]
    Shoemaker CB, Shoemaker DP, Fruchart R. The structure of a new magnetic phase related to the Sigma phase: iron neodymium borides Nd2Fe14B. Acta Crystallogsect. 1984;40(10):1665.Google Scholar
  40. [40]
    Herbst JE, Croat JJ. Relationships between crystal structure and magnetic properties in Nd2Fe14B. Phys Rev B. 1984;29(7):4176.Google Scholar
  41. [41]
    Hua RL, Soh AK, Zheng GP, Ni Y. Micromagnetic modeling studies on the effects of stress on magnetization reversal and dynamic hysteresis. J Magn Magn Mater. 2006;301(2):458.Google Scholar
  42. [42]
    Hirosawa S, Matsuura Y, Yamamoto H, Fujimura S, Sagawa M. Magnetization and magnetic anisotropy of R2Fe14B measured on single Crystals. J Appl Phys. 1986;59(3):873.Google Scholar
  43. [43]
    Wang HJ, Li AH, Zhu MG, Li W. Sintered Nd–Fe–B magnets with improved impact stability. J Magn Magn Mater. 2006;307(2):268.Google Scholar
  44. [44]
    Wang HJ, Li AH, Zhu MG, Li W. Effect of Rare Earth substitution on the machinability of R-Fe–B sintered magnets. J Iron Steel Res. 2006;13(S1):367.Google Scholar
  45. [45]
    Li YF, Zhu MG, Li W, Zhou D, Lu F, Chen L, Wu JY, Qi Y, Du A. The impact induced demagnetization mechanism in NdFeB permanent magnets. Chin Phys Lett. 2013;30(9):97501.Google Scholar

Copyright information

© The Nonferrous Metals Society of China and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Institute of Fisheries EngineeringChinese Academy of Fishery SciencesBeijingChina

Personalised recommendations