Rare Metals

pp 1–13 | Cite as

Construction of TiO2/silane nanofilm on AZ31 magnesium alloy for controlled degradability and enhanced biocompatibility

  • Lei Huang
  • Kun Su
  • Yu-Feng Zheng
  • Kelvin Wai-Kwok Yeung
  • Xiang-Mei LiuEmail author


A TiO2 nanofilm was prepared on the surface of AZ31 magnesium alloy with controllable thickness through atomic layer deposition (ALD) technique, which can adjust the corrosion behaviors of AZ31 Mg alloy. Compared with the untreated Mg alloys, corrosion current densities (icorr) can decline by 58% in the 200-cycles TiO2-covered Mg alloy and further decline by up to 74% with the thickness of nanofilm up to 63 nm (400 cycles). The subsequent modification with a cross-linked conversion layer of 3-amino-propyltriethoxysilane (APTES) by a dipping method can produce a compact silane coating on TiO2 nanofilm, which can seal pinholes of TiO2 nanofilm and serve as a barrier to further adjust the corrosion behavior of the substrate. The icorr can decline about two orders of magnitude in the TiO2/silane composite coating. Making the adjustable corrosion rate come true, which can be attributed to the precise control on the thickness of metal oxide nanofilm and additional protection from the compact silane coating. In vitro study discloses that the TiO2/silane hybrid coating shows higher expression of alkaline phosphatase (ALP) and can promote cellular adhesion and proliferation with better cytocompatibility than untreated Mg alloy.


Magnesium alloy TiO2 Biodegradability Atomic layer deposition Hybrid coating Biocompatibility 



This work was financially supported by the Natural Science Fund of Hubei Province (No. 2018CFA064), the National Natural Science Foundation of China (NSFC) (Nos. 51671081 and 51422102), the National Key Research and Development Program of China (No. 2016YFC1100600, sub-project 2016YFC1100604), the Hong Kong Research Grants Council (RGC) General Research Funds (GRF) (Nos. 11301215, 11205617 and 17214516), and RGC/NSFC (N_HKU725-16), the Hong Kong Innovation and Technology Commission (ITC) (Nos. ITS/287/17 and GHX/002/14SZ) and the Health and Medical Research Fund (No. 03142446).

Supplementary material

12598_2018_1187_MOESM1_ESM.doc (7.8 mb)
Supplementary material 1 (DOC 7996 kb)


  1. [1]
    Feng HQ, Wang GM, Jin WH, Zhang XM, Huang YF, Gao A, Wu H, Wu GS, Chu PK. Systematic study of inherent antibacterial properties of magnesium-based biomaterials. ACS Appl Mater Interfaces. 2016;8(15):9662.CrossRefGoogle Scholar
  2. [2]
    Wang JL, Wu YH, Li HF, Liu Y, Bai XL, Chau WH, Zheng YF, Qin L. Magnesium alloy based interference screw developed for ACL reconstruction attenuates peri-tunnel bone loss in rabbits. Biomaterials. 2018;157:86.CrossRefGoogle Scholar
  3. [3]
    Wang JL, Wan Y, Ma ZJ, Guo YC, Yang Z, Wang P, Li JP. Glass forming ability and corrosion performance of Mn-doped Mg–Zn–Ca amorphous alloys for biomedical applications. Rare Met. 2018;37(7):579.CrossRefGoogle Scholar
  4. [4]
    Li X, Liu XM, Wu SL, Yeung KWK, Zheng YF, Chu PK. Design of magnesium alloys with controllable degradation for biomedical implants: from bulk to surface. Acta Biomater. 2016;45:2.CrossRefGoogle Scholar
  5. [5]
    Singer F, Schlesak M, Mebert C, Hohn S, Virtanen S. Corrosion properties of polydopamine coatings formed in one-step immersion process on magnesium. ACS Appl Mater Interfaces. 2015;7(48):26758.CrossRefGoogle Scholar
  6. [6]
    Jiang QT, Zhang K, Li XG, Li YJ, Ma ML, Shi GL, Yuan JW. Corrosion behaviors for peak-aged Mg-7Gd-5Y-lNd-0.5Zr alloys with oxide films. Rare Met. 2016;35(10):758.CrossRefGoogle Scholar
  7. [7]
    Kim J, Mousa HM, Park CH, Kim CS. Enhanced corrosion resistance and biocompatibility of AZ31 Mg alloy using PCL/ZnO NPs via electrospinning. Appl Surf Sci. 2017;396:249.CrossRefGoogle Scholar
  8. [8]
    Reinhart RA. Magnesium metabolism a review with special reference to the relationship between intracellular content and serum levels. Arch Intern Med. 1988;148(11):2415.CrossRefGoogle Scholar
  9. [9]
    Peng F, Li H, Wang DH, Tian P, Tian YX, Yuan GY, Xu DM, Liu XY. Enhanced corrosion resistance and biocompatibility of magnesium alloy by Mg–Al-layered double hydroxide. ACS Appl Mater Interfaces. 2016;8(51):35033.CrossRefGoogle Scholar
  10. [10]
    Li X, Weng ZY, Yuan W, Luo XZ, Wong HM, Liu XM, Wu SL, Yeung KWK, Zheng YF, Chu PK. Corrosion resistance of dicalcium phosphate dihydrate/poly(lactic-co-glycolic acid) hybrid coating on AZ31 magnesium alloy. Corros Sci. 2016;102:209.CrossRefGoogle Scholar
  11. [11]
    Wu H, Wu GS, Chu PK. Effects of cerium ion implantation on the corrosion behavior of magnesium in different biological media. Surf Coat Technol. 2016;306:6.CrossRefGoogle Scholar
  12. [12]
    Ding X, Wang XC, Ding KH, Cui SL, Sun YC. Corrosion prevention of sintered Nd–Fe–B magnet by a phosphate chemical conversion treatment. Rare Met. 2015. Scholar
  13. [13]
    Wu GS, Zhang XM, Zhao Y, Ibrahim JM, Yuan GY, Chu PK. Plasma modified Mg–Nd–Zn–Zr alloy with enhanced surface corrosion resistance. Corros Sci. 2014;78(1):121.CrossRefGoogle Scholar
  14. [14]
    Zhao YB, Shi LQ, Ji XJ, Li JC, Han ZZ, Li SQ, Zeng RC, Zhang F, Wang ZL. Corrosion resistance and antibacterial properties of polysiloxane modified layer-by-layer assembled self-healing coating on magnesium alloy. Colloid Surf B. 2018;526:43.CrossRefGoogle Scholar
  15. [15]
    Liu XM, Yang QY, Li ZY, Yuan W, Zheng YF, Cui ZD, Yang XJ, Yeung KWK, Wu SL. A combined coating strategy based on atomic layer deposition for enhancement of corrosion resistance of AZ31 magnesium alloy. Appl Surf Sci. 2018;434:1101.CrossRefGoogle Scholar
  16. [16]
    Daubert JS, Hill GT, Gotsch HN, Gremaud AP, Ovental JS, Williams PS, Oldham CJ, Parsons GN. Corrosion protection of copper using Al2O3, TiO2, ZnO, HfO2, and ZrO2 atomic layer deposition. ACS Appl Mater Interfaces. 2017;9(4):4192.CrossRefGoogle Scholar
  17. [17]
    Yang QY, Yuan W, Liu XM, Zheng YF, Cui ZD, Yang XJ, Pan HB, Wu SL. Atomic layer deposited ZrO2 nanofilm on Mg–Sr alloy for enhanced corrosion resistance and biocompatibility. Acta Biomater. 2017;58:515.CrossRefGoogle Scholar
  18. [18]
    Skoog SA, Elam JW, Narayan RJ. Atomic layer deposition: medical and biological applications. Int Mater Rev. 2013;58(2):113.CrossRefGoogle Scholar
  19. [19]
    Yan HM, Liu Y, Pang SJ, Zhang T. Glass formation and properties of Ti-based bulk metallic glasses as potential biomaterials with Nb additions. Rare Met. 2018;37(10):831.CrossRefGoogle Scholar
  20. [20]
    Qiu JC, Li JH, Wang S, Ma BJ, Zhang S, Guo WB, Zhang XD, Tang W, Sang YH, Liu H. TiO2 nanorod array constructed nanotopography for regulation of mesenchymal stem cells fate and the realization of location-committed stem cell differentiation. Small. 2016;12(13):1770.CrossRefGoogle Scholar
  21. [21]
    Kumar N, Chauhan NS, Mittal A, Sharma S. TiO2 and its composites as promising biomaterials: a review. Biometals. 2018;31(2):1.CrossRefGoogle Scholar
  22. [22]
    Chen S, Guan SK, Chen B, Li W, Wang J, Wang LG, Zhu SJ, Hu JH. Corrosion behavior of TiO2 films on Mg–Zn alloy in simulated body fluid. Appl Surf Sci. 2011;257(9):4464.CrossRefGoogle Scholar
  23. [23]
    Hou SS, Zhang RR, Guan SK, Ren CX, Gao JH, Lu QB, Cui XZ. In vitro corrosion behavior of Ti-O film deposited on fluoride-treated Mg–Zn–Y–Nd alloy. Appl Surf Sci. 2012;258(8):3571.CrossRefGoogle Scholar
  24. [24]
    Cui LY, Gao SD, Li PP, Zeng RC, Zhang F, Li SQ, Han EH. Corrosion resistance of a self-healing micro-arc oxidation/polymethyltrimethoxysilane composite coating on magnesium alloy AZ31. Corros Sci. 2017;118:84.CrossRefGoogle Scholar
  25. [25]
    Liu X, Yue ZL, Romeo T, Weber J, Scheuermann T, Moulton S, Wallace G. Biofunctionalized anti-corrosive silane coatings for magnesium alloys. Acta Biomater. 2013;9(10):8671.CrossRefGoogle Scholar
  26. [26]
    Zomorodian A, Brusciotti F, Fernandes A, Carmezim MJ, Moura e Silva T, Fernandes JCS, Montemor MF. Anti-corrosion performance of a new silane coating for corrosion protection of AZ31 magnesium alloy in Hank’s solution. Surf Coat Technol. 2012;206(21):4368.CrossRefGoogle Scholar
  27. [27]
    Dermience M, Lognay G, Mathieu F, Goyens P. Effects of thirty elements on bone metabolism. J Trace Elem Med Biol. 2015;32:86.CrossRefGoogle Scholar
  28. [28]
    Liu J, Zheng B, Wang P, Wang XG, Zhang B, Shi QP, Xi TF, Chen M, Guan S. Enhanced in vitro and in vivo performance of Mg–Zn–Y–Nd alloy achieved with APTES pretreatment for drug-eluting vascular stent application. ACS Appl Mater Interfaces. 2016;8(28):17842.CrossRefGoogle Scholar
  29. [29]
    Trino LD, Dias LFG, Albano LGS, Bronze-Uhle ES, Rangel EC, Graeff CFO, Lisboa-Filho PN. Zinc oxide surface functionalization and related effects on corrosion resistance of titanium implants. Ceram Int. 2018;44(4):4000.CrossRefGoogle Scholar
  30. [30]
    Zhao H, Cai S, Niu SX, Zhang RY, Wu XD, Xu GH, Ding ZT. The influence of alkali pretreatments of AZ31 magnesium alloys on bonding of bioglass–ceramic coatings and corrosion resistance for biomedical applications. Ceram Int. 2015;41(3):4590.CrossRefGoogle Scholar
  31. [31]
    Aarik J, Aidla A, Uustare T, Sammelselg V. Morphology and structure of TiO2 thin films grown by atomic layer deposition. J Cryst Growth. 1995;148(3):268.CrossRefGoogle Scholar
  32. [32]
    Shao PH, Tian JY, Zhao ZW, Shi WX, Gao SS, Cui FY. Amorphous TiO2 doped with carbon for visible light photodegradation of rhodamine B and 4-chlorophenol. Appl Surf Sci. 2015;324(324):35.CrossRefGoogle Scholar
  33. [33]
    Eisenberg D, Ahn HS, Bard AJ. Enhanced photoelectrochemical water oxidation on bismuth vanadate by electrodeposition of amorphous titanium dioxide. J Am Chem Soc. 2014;136(40):14011.CrossRefGoogle Scholar
  34. [34]
    Dong ZB, Ding DY, Li T, Ning CQ. Facile fabrication of Si-doped TiO2 nanotubes photoanode for enhanced photoelectrochemical hydrogen generation. Appl Surf Sci. 2018;436:125.CrossRefGoogle Scholar
  35. [35]
    Su Y, Chen S, Quan X, Zhao HM, Zhang YB. A silicon-doped TiO2 nanotube arrays electrode with enhanced photoelectrocatalytic activity. Appl Surf Sci. 2008;255(5):2167.CrossRefGoogle Scholar
  36. [36]
    Yang W, Zhu ZJ, Wang JJ, Wu YC, Zhai T, Song GL. Slow positron beam study of corrosion behavior of AM60B magnesium alloy in NaCl solution. Corros Sci. 2016;106:271.CrossRefGoogle Scholar
  37. [37]
    Jamesh M, Kumar S, Sankara Narayanan TSN. Corrosion behavior of commercially pure Mg and ZM21 Mg alloy in Ringer’s solution Long term evaluation by EIS. Corros Sci. 2011;53(2):645.CrossRefGoogle Scholar
  38. [38]
    Zeng RC, Cui LY, Jiang K, Liu R, Zhao BD, Zheng YF. In vitro corrosion and cytocompatibility of a microarc oxidation coating and poly(L-lactic acid) composite coating on Mg-1Li-1Ca alloy for orthopedic implants. ACS Appl Mater Interfaces. 2016;8(15):10014.CrossRefGoogle Scholar
  39. [39]
    Gaharwar AK, Mihaila SM, Swami A, Patel A, Sant S, Reis RL, Marques AP, Gomes ME, Khademhosseini A. Bioactive silicate nanoplatelets for osteogenic differentiation of human mesenchymal stem cells. Adv Mater. 2013;25(24):3329.CrossRefGoogle Scholar
  40. [40]
    Zhang YZ, Liu XM, Li ZY, Zhu SL, Yuan XB, Cui ZD, Yang XJ, Chu PK, Wu SL. Nano Ag/ZnO-incorporated hydroxyapatite composite coatings: highly effective infection prevention and excellent osteointegration. ACS Appl Mater Interfaces. 2018;10(1):1266.CrossRefGoogle Scholar
  41. [41]
    Xie D, Wang HH, Ganesan R, Leng YX, Sun H, Huang N. Fatigue durability and corrosion resistance of TiO2 films on CoCrMo alloy under cyclic deformation. Surf Coat Technol. 2015;275:252.CrossRefGoogle Scholar
  42. [42]
    Hartwig A, Klein O, Karl H. Sputtered titanium dioxide thin films for galvanic corrosion protection of AISI 304 stainless steel coupled with carbon fiber reinforced plastics. Thin Solid Films. 2017;621:211.CrossRefGoogle Scholar
  43. [43]
    Umeda J, Nakanishi N, Kondoh K, Imai H. Surface potential analysis on initial galvanic corrosion of Ti/Mg–Al dissimilar material. Mater Chem Phys. 2016;179:5.CrossRefGoogle Scholar
  44. [44]
    Kim J, Gilbert JL. Cytotoxic effect of galvanically coupled magnesium-titanium particles. Acta Biomater. 2016;30:368.CrossRefGoogle Scholar
  45. [45]
    Knez M, Nielsch K, Niinistö L. Synthesis and surface engineering of complex nanostructures by atomic layer deposition. Adv Mater. 2007;19(21):3425.CrossRefGoogle Scholar
  46. [46]
    Ren N, Li JH, Qiu JC, Sang YH, Jiang HD, Boughton RI, Huang L, Huang W, Liu H. Nanostructured titanate with different metal ions on the surface of metallic titanium: a facile approach for regulation of rBMSCs fate on titanium implants. Small. 2014;10(15):3169.CrossRefGoogle Scholar
  47. [47]
    Zhang L, Pei J, Wang HD, Shi YJ, Niu JL, Yuan F, Huang H, Zhang H, Yuan GY. Facile preparation of poly(lactic acid)/brushite bilayer coating on biodegradable magnesium alloys with multiple functionalities for orthopedic application. ACS Appl Mater Interfaces. 2017;9(11):9437.CrossRefGoogle Scholar
  48. [48]
    Jo YK, Choi BH, Kim CS, Cha HJ. Diatom-inspired silica nanostructure coatings with controllable microroughness using an engineered mussel protein glue to accelerate bone growth on titanium-based implants. Adv Mater. 2017;29(46):1704906.CrossRefGoogle Scholar
  49. [49]
    Lipski AM, Pino CJ, Haselton FR, Chen IW, Shastri VP. The effect of silica nanoparticle-modified surfaces on cell morphology, cytoskeletal organization and function. Biomaterials. 2008;29(28):3836.CrossRefGoogle Scholar
  50. [50]
    Han P, Cheng PF, Zhang SX, Zhao CL, Ni JH, Zhang YZ, Zhong WR, Hou P, Zhang XN, Zheng YF, Chai YM. In vitro and in vivo studies on the degradation of high-purity Mg (99.99wt.%) screw with femoral intracondylar fractured rabbit model. Biomaterials. 2015;64:57.CrossRefGoogle Scholar
  51. [51]
    Zainal Abidin NI, Rolfe B, Owen H, Malisano J, Martin D, Hofstetter J, Uggowitzer PJ, Atrens A. The in vivo and in vitro corrosion of high-purity magnesium and magnesium alloys WZ21 and AZ91. Corros Sci. 2013;75(7):354.CrossRefGoogle Scholar

Copyright information

© The Nonferrous Metals Society of China and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Materials Science and EngineeringHubei UniversityWuhanChina
  2. 2.State Key Laboratory for Turbulence and Complex System, Department of Materials Science and Engineering, College of EngineeringPeking UniversityBeijingChina
  3. 3.Department of Orthopaedics and Traumatology, Li Ka Shing Faculty of MedicineThe University of Hong KongPokfulamChina

Personalised recommendations