Advertisement

Rare Metals

pp 1–6 | Cite as

Design and properties of calcium copper titanate/poly(dimethyl siloxane) dielectric elastomer composites

  • Yi-Yang Zhang
  • Yang Min
  • Gen-Lin Wang
  • Zhi-Feng Wang
  • Jun-Liang Liu
  • Zhi-Wei Luo
  • Ming ZhangEmail author
Article
  • 27 Downloads

Abstract

The high phase content of inorganic dielectric fillings will give a strong electric driving force and hard matrix. That is a contradiction in enhancing the electro-deformation of dielectric elastomers (DEs). Therefore, in this paper, by focusing on how to approach a balance between these and finding an effective way to tune the electric response of the DEs, the theoretical calculation and experimental investigation based on calcium copper titanate (CCTO)/poly(dimethyl siloxane) (PDMS) were carried out. It is found that CCTO with a smaller particle size shows a larger dielectric parameter. With smaller CCTO particle as the fillings, the fabricated elastomer composite would approach to a low modulus by a proper CCTO phase morphology in the matrix.

Keywords

Dielectric elastomer Electro-deformation Phase morphology Modulus control 

Notes

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Nos. 51403181 and 51678292), the China Postdoctoral Science Foundation (Nos. 2016T90512 and 2015M570483), the Scholarship of Jiangsu Government for Oversea Study and the Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions (Chemistry).

References

  1. [1]
    Pei Q, Hu W, McCoul D, Biggs SJ, Stadler D, Carpi F. Electromechanically Active Polymers, Polymers and Polymeric Composites. Berlin: Springer; 2016. 1.CrossRefGoogle Scholar
  2. [2]
    Carpi F, Bauer S, Rossi DD. Stretching dielectric elastomer performance. Science. 2010;330(6012):1759.CrossRefGoogle Scholar
  3. [3]
    Bauer S, Gerhard-Multhaupt R, Sessler GM. Ferroelectrets: soft electroactive foams for transducers. Phys Today. 2004;57(2):37.CrossRefGoogle Scholar
  4. [4]
    Yang T, Xie D, Li Z, Zhu H. Recent advances in wearable tactile sensors: materials, sensing mechanisms, and device performance. Mater Sci Eng, R. 2017;115:1.CrossRefGoogle Scholar
  5. [5]
    Pelrine R, Kornbluh R, Pei Q, Joseph J. High-speed electrically actuated elastomers with strain greater than 100%. Science. 2000;287(5454):836.CrossRefGoogle Scholar
  6. [6]
    Zhang Q, Bharti V, Zhao X. Giant electrostriction and relaxor ferroelectric behavior in electron-irradiated poly(vinylidene fluoride-trifluoroethylene) copolymer. Science. 1998;280(5372):2101.CrossRefGoogle Scholar
  7. [7]
    Sarban R, Jones RW, Mace BR, Rustighi E. A tubular dielectric elastomer actuator: fabrication, characterization and active vibration isolation. M.S.S.P. 2011;25(8):2879.Google Scholar
  8. [8]
    Pelrine R, Kornbluh R, Kofod G. High-strain actuator materials based on dielectric elastomers. Adv Matter. 2000;12(16):1223.CrossRefGoogle Scholar
  9. [9]
    Choi HR, Jung K, Ryew S, Nam JD, Jeon J, Koo JC, Tanie K. Biomimetic soft actuator: design, modeling, control, and applications. IEEE/ASME Trans Mechatron. 2005;10(6):581.CrossRefGoogle Scholar
  10. [10]
    Kofod G, Wirges W, Paajanen M, Bauer S. Energy minimization for self-organized structure formation and actuation. Appl Phys Lett. 2009;90(8):081916.CrossRefGoogle Scholar
  11. [11]
    Carpi F, Rossi D, Kornbluh D, Pelrine R, Sommer-Larsen P. Dielectric Elastomer as Electromechanical Transducers: Fundamentals, Materials, Devices, Models and Applications of an Emerging Electroactive Polymer Technology. Amsterdam: Elsevier; 2008. 77.Google Scholar
  12. [12]
    Pelrine R, Kornbluh R, Kofod G. High-strain actuator materials based on dielectric elastomers. Adv Mater. 2000;12(16):1223.CrossRefGoogle Scholar
  13. [13]
    Kofod G, Sommer-Larsen P, Kornbluh R, Pelrine R. Actuation response of polyacrylate dielectric elastomers. Spies Int Symp Smart Struct. 2003;14(12):787.Google Scholar
  14. [14]
    Bele B, Cazacu M, Stiubianu G, Vlad S, Ignat M. Polydimethylsiloxane–barium titanate composites: preparation and evaluation of the morphology, moisture, thermal, mechanical and dielectric behavior. Compos B Eng. 2015;68:237.CrossRefGoogle Scholar
  15. [15]
    Duan L, Wang GL, Zhang YY, Zhang YN, Wei YY, Wang ZF, Zhang M. High dielectric and actuated properties of silicone dielectric elastomers filled with magnesium-doped calcium copper titanate particles. Polym Compos. 2016.  https://doi.org/10.1002/pc.23986.CrossRefGoogle Scholar
  16. [16]
    Ouyang G, Wang K, Chen X. TiO2 nanoparticles modified polydimethylsiloxane with fast response time and increased dielectric constant. Micromech Microeng. 2012;22(7):074002.CrossRefGoogle Scholar
  17. [17]
    Tangboriboon N, Datsanae S, Onthong A, Kunanuruksapong R, Sirivat A. Eletromechanical responses of dielectric elastomer composite actuators based on natural rubber and alumina. Elastom Plast. 2012;45:143.CrossRefGoogle Scholar
  18. [18]
    Zhang X, Wissler M, Jaehne B, Breonnimann R, Kovacs G. Effects of crosslinking, prestrain and dielectric filler on the electromechanical response of a new silicone and comparison with acrylic elastomer. Smart Struct Mater. Proc SPIE. 2004;5385:78.Google Scholar
  19. [19]
    Yang D, Tian M, Kang H, Dong Y, Liu H, Yu Y, Zhang LQ. New polyester dielectric elastomer with large actuated strain at low electric field. Mater Lett. 2012;76(6):229.Google Scholar
  20. [20]
    Yang D, Tian M, Dong Y, Liu H, Yu Y, Zhang LQ. Disclosed dielectric and electromechanical properties of hydrogenated nitrile–butadiene dielectric elastomer. Smart Mater Struct. 2012;21(3):035017.CrossRefGoogle Scholar
  21. [21]
    Liu H, Zhang LQ, Yang D, Ning N, Yu Y, Yao L, Yan B, Tian M. A new kind of electro-active polymer composite composed of silicone elastomer and polyethylene glycol. J Phys D Appl Phys. 2012;45(48):485303.CrossRefGoogle Scholar
  22. [22]
    Zhao H, Xia Y, Dang ZM, Zha J, Hu G. Composition dependence of dielectric properties, elastic modulus, and electroactivity in (carbon black-BaTiO3)/silicone rubber nanocomposites. J Appl Polym Sci. 2013;127(6):4440.CrossRefGoogle Scholar
  23. [23]
    Dang ZM, Xia B, Yao S, Jiang M, Song H, Zhang LQ. High-dielectric-permittivity high-elasticity three-component nanocomposites with low percolation threshold and low dielectric loss. Appl Phys Lett. 2009;94(4):042902.CrossRefGoogle Scholar
  24. [24]
    Liu S, Tian M, Yan B, Yao Y, Zhang LQ, Nishi T, Ning NY. High performance dielectric elastomers by partially reduced graphene oxide and disruption of hydrogen bonding of polyurethanes. Polymer. 2015;56:375.CrossRefGoogle Scholar
  25. [25]
    Carpi F, Gallone G, Galantini F, Rossi D. Silicone-poly(hexylthiophene) blends as elastomers with enhanced electromechanical transduction properties. Adv Func Mater. 2010;18(18):235.Google Scholar
  26. [26]
    Carpi F, Rossi D. Improvement of electromechanical actuating performances of a silicone dielectric elastomer by dispersion of titanium dioxide powder. IEEE Trans Dielectr Electr Insul. 2005;12(4):835.CrossRefGoogle Scholar
  27. [27]
    Liu H, Zhang LQ, Yang D, Yu Y, Yao L, Tian M. Mechanical, dielectric, and actuatued strain of silicone elastomer filled with various types of TiO2. Soft Mater. 2013;11(3):363.CrossRefGoogle Scholar
  28. [28]
    Wang GL, Zhang YY, Duan L, Ding KH, Wang ZF, Zhang M. Property reinforcement of silicone dielectric elastomers filled with self-prepared calcium copper titanate particles. J Appl Polym Sci. 2015;132(39):42613.Google Scholar
  29. [29]
    Wang GL, Zhang YY, Duan L, Ding KH, Wang ZF, Zhang M. Preparation of π–conjugated truxene/silicone dielectric elastomers with large actuated strain at low electric field. Mater Lett. 2016;169:157.CrossRefGoogle Scholar
  30. [30]
    Tian M, Li M, Li JC. Effect of size on dielectric constant for low dimension materials. Phys B: Phys Condens Matter. 2011;406(3):541.CrossRefGoogle Scholar

Copyright information

© The Nonferrous Metals Society of China and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of System InformaticsKobe UniversityKobeJapan
  2. 2.School of Chemistry and Chemical EngineeringYangzhou UniversityYangzhouChina

Personalised recommendations