Rare Metals

pp 1–9 | Cite as

Synthesis and hydrogen desorption kinetics of Mg2FeH6- and Mg2CoH5-based composites with in situ formed YH3 and Mg2NiH4 nanoparticles

  • Can Li
  • Zhi-Wen Wu
  • Qing-An ZhangEmail author


Mg2FeH6- and Mg2CoH5-based composites with in situ formed YH3 and Mg2NiH4 nanoparticles were synthesized by ball milling of Mg10YNi + 4Fe (in mole ratio) and Mg10YNi + 4Co powders, respectively, at 4 MPa H2 followed by hydrogenation at 673 K for 60 h under a hydrogen pressure of 7 MPa. It is found that the nanocrystalline YH3 and Mg2NiH4 particles are indeed embedded in Mg2FeH6 and Mg2CoH5 matrixes. The hydrogen desorption rates of Mg2FeH6- and Mg2CoH5-based composites are enhanced compared to those undoped Mg2FeH6 and Mg2CoH5 hydrides, respectively, due to the synergetic catalysis of nanosized YH3 and Mg2NiH4 particles. This finding provides us with an efficient and simple approach for the improvement in hydrogen desorption kinetics of Mg-based hydrogen storage materials.


Hydrogen storage Mg-based hydride Kinetics Catalytic effect 



This study was financially supported by the National Natural Science Foundation of China (Nos. 51571001 and 51271002).


  1. [1]
    Aguey-Zinsou KF, Ares-Fernández JR. Hydrogen in magnesium: new perspectives toward functional stores. Energy Environ Sci. 2010;3(5):526.CrossRefGoogle Scholar
  2. [2]
    Sakintuna B, Lamari-Darkrim F, Hirscher M. Metal hydride materials for solid hydrogen storage: a review. Int J Hydrog Energy. 2007;32(9):1121.CrossRefGoogle Scholar
  3. [3]
    Crivello JC, Denys RV, Dornheim M, Felderhoff M, Grant DM, Huot J, Jensen TR, de Jongh P, Latroche M, Walker GS, Webb CJ, Yartys VA. Mg-based compounds for hydrogen and energy storage. Appl Phys A. 2016;122(2):85.CrossRefGoogle Scholar
  4. [4]
    Si T, Cao Y, Zhang Q, Sun D, Ouyang L, Zhu M. Enhanced hydrogen storage properties of a Mg–Ag alloy with solid dissolution of indium: a comparative study. J Mater Chem A. 2015;3(16):8581.CrossRefGoogle Scholar
  5. [5]
    Zhang Y, Zhuang X, Zhu Y, Wan N, Li L, Dong J. Synergistic effects of TiH2 and Pd on hydrogen desorption performances of MgH2. Int J Hydrog Energy. 2015;40(46):16338.CrossRefGoogle Scholar
  6. [6]
    Yuan J, Zhu Y, Li Y, Zhang L, Li L. Effect of multi-wall carbon nanotubes supported palladium addition on hydrogen storage properties of magnesium hydride. Int J Hydrog Energy. 2014;39(19):10184.CrossRefGoogle Scholar
  7. [7]
    Cui J, Wang H, Sun DL, Zhang QA, Zhu M. Realizing nano-confinement of magnesium for hydrogen storage using vapour transport deposition. Rare Met. 2016;35(5):401.CrossRefGoogle Scholar
  8. [8]
    Nielsen TK, Manickam K, Hirscher M, Besenbacheret F, Jensen TR. Confinement of MgH2 nanoclusters within nanoporous aerogel scaffold materials. ACS Nano. 2009;3(11):3521.CrossRefGoogle Scholar
  9. [9]
    Kalinichenka S, Röntzsch L, Kieback B. Structural and hydrogen storage properties of melt-spun Mg–Ni–Y alloys. Int J Hydrog Energy. 2009;34(18):7749.CrossRefGoogle Scholar
  10. [10]
    Ding X, Li Y, Fang F, Sun D, Zhang Q. Hydrogen-induced magnesium–zirconium interfacial coupling: enabling fast hydrogen sorption at lower temperatures. J Mater Chem A. 2017;5(10):5067.CrossRefGoogle Scholar
  11. [11]
    Feng D, Sun H, Wang X, Zhang Y. Gaseous hydrogen storage properties of La2-xSmxMg16Ni (x = 0 ~ 0.4) as-cast alloys. Chin J Rare Met. 2017;41(6):613.Google Scholar
  12. [12]
    Zhang J, Cuevas F, Zaïdi W, Bonnet JP, Aymard L, Bobet JL, Latroche M. Highlighting of a single reaction path during reactive ball milling of Mg and TM by quantitative H2 gas sorption analysis to form ternary complex hydrides (TM = Fe Co, Ni). J Phys Chem C. 2011;115(11):4971.CrossRefGoogle Scholar
  13. [13]
    Polanski M, Nielsen TK, Cerenius Y, Bystrzycki J, Jensen TR. Synthesis and decomposition mechanisms of Mg2FeH6 studied by in situ synchrotron X-ray diffraction and high-pressure DSC. Int J Hydrog Energy. 2010;35(8):3578.CrossRefGoogle Scholar
  14. [14]
    Norek M, Nielsen TK, Polanski M, Kunce I, Płocinski T, Jaroszewicz LR, Cerenius Y, Jensen TR, Bystrzycki J. Synthesis and decomposition mechanisms of ternary Mg2CoH5 studied using in situ synchrotron X-ray diffraction. Int J Hydrog Energy. 2011;36(17):10760.CrossRefGoogle Scholar
  15. [15]
    Jongh PE, Adelhelm P. Nanosizing and nanoconfinement: new strategies towards meeting hydrogen storage goals. Chemsuschem. 2010;3(12):1332.CrossRefGoogle Scholar
  16. [16]
    Li Y, Zhou G, Fang F, Yu X, Zhang Q, Ouyang L, Zhu M, Sun D. De-/re-hydrogenation features of NaAlH4 confined exclusively in nanopores. Acta Mater. 2011;59(4):1829.CrossRefGoogle Scholar
  17. [17]
    Paskevicius M, Sheppard DA, Buckley CE. Thermodynamic changes in mechanochemically synthesized magnesium hydride nanoparticles. J Am Chem Soc. 2010;132(14):5077.CrossRefGoogle Scholar
  18. [18]
    Li W, Li C, Ma H, Chen J. Magnesium nanowires: enhanced kinetics for hydrogen absorption and desorption. J Am Chem Soc. 2007;129(21):6710.CrossRefGoogle Scholar
  19. [19]
    Zlotea C, Oumellal Y, Hwang SJ, Ghimbeu CM, Jongh PE, Latroche M. Ultra-small MgH2 nanoparticles embedded into an ordered microporous carbon showing rapid hydrogen sorption kinetics. J Phys Chem C. 2015;119(32):18091.CrossRefGoogle Scholar
  20. [20]
    Xia G, Tan Y, Chen X, Sun D, Guo Z, Liu HK, Ouyang L, Zhu M, Yu X. Monodisperse magnesium hydride nanoparticles uniformly self-assembled on graphene. Adv Mater. 2015;27(39):5981.CrossRefGoogle Scholar
  21. [21]
    Zhang J, Zhu Y, Lin H, Liu Y, Zhang Y, Li S, Ma Z, Li L. Metal hydride nanoparticles with ultrahigh structural stability and hydrogen storage activity derived from microencapsulated nanoconfinement. Adv Mater. 2017;29(24):1700760.CrossRefGoogle Scholar
  22. [22]
    Varin RA, Li S, Chiu C, Guo L, Morozova O, Khomenko T, Wronski Z. Nanocrystalline and non-crystalline hydrides synthesized by controlled reactive mechanical alloying/milling of Mg and Mg–X (X = Fe Co, Mn, B) systems. J Alloys Compd. 2005;404(12):494.CrossRefGoogle Scholar
  23. [23]
    Varin RA, Li S, Wronski Z, Morozova O, Khomenko T. The effect of sequential and continuous high-energy impact mode on the mechano-chemical synthesis of nanostructured complex hydride Mg2FeH6. J Alloys Compd. 2005;390(1–2):282.CrossRefGoogle Scholar
  24. [24]
    Wang Y, Cheng F, Li C, Tao Z, Chen J. Preparation and characterization of nanocrystalline Mg2FeH6. J Alloys Compd. 2010;508(2):554.CrossRefGoogle Scholar
  25. [25]
    Li S, Varin RA, Morozova O, Khomenko T. Controlled mechano-chemical synthesis of nanostructured ternary complex hydride Mg2FeH6 under low-energy impact mode with and without pre-milling. J Alloys Compd. 2004;384(1–2):231.CrossRefGoogle Scholar
  26. [26]
    Shao HY, Li XG. Kinetics and thermodynamics of nanostructured Mg-based hydrogen storage materials synthesized from metal nanoparticles. Adv Mater Res. 2014;924:189.CrossRefGoogle Scholar
  27. [27]
    Zhang X, Yang R, Qu J, Zhao W, Xie L, Tian W, Li X. The synthesis and hydrogen storage properties of pure nanostructured Mg2FeH6. Nanotechnology. 2010;21(9):095706.CrossRefGoogle Scholar
  28. [28]
    Zhang QA, Zhang LX, Wang QQ. Crystallization behavior and hydrogen storage kinetics of amorphous Mg11Y2Ni2 alloy. J Alloys Compd. 2013;551(5):376.CrossRefGoogle Scholar
  29. [29]
    Zhang QA, Liu DD, Wang QQ, Fang F, Sun DL, Ouyang LZ, Zhu M. Superior hydrogen storage kinetics of Mg12YNi alloy with a long-period stacking ordered phase. Scr Mater. 2011;65(3):233.CrossRefGoogle Scholar
  30. [30]
    Si TZ, Liu YF, Zhang QA. Hydrogen storage properties of the supersaturated Mg12YNi solid solution. J Alloys Compd. 2010;507(2):489.CrossRefGoogle Scholar
  31. [31]
    Li Y, Zhang L, Zhang Q, Fang F, Sun D, Li K, Wang H, Ouyang L, Zhu M. In situ embedding of Mg2NiH4 and YH3 nanoparticles into bimetallic hydride NaMgH3 to inhibit phase segregation for enhanced hydrogen storage. J Phys Chem C. 2014;118(41):23635.CrossRefGoogle Scholar
  32. [32]
    Wu ZW, Li YT, Zhang QA. Catalytic effect of nanostructured Mg2Ni and YH2/YH3 on hydrogen absorption–desorption kinetics of the Mg–Cu–H system. J Alloys Compd. 2016;685:639.CrossRefGoogle Scholar
  33. [33]
    Izumi F, Ikeda T. A rietveld-analysis programm RIETAN-98 and its applications to zeolites. Mater Sci Forum. 2000;321:198.CrossRefGoogle Scholar
  34. [34]
    Zolliker P, Yvon K, Fischer P, Schefer J. Dimagnesium cobalt (I) pentahydride, Mg2CoH5, containing square-pyramidal pentahydrocobaltate (4−) (CoH5 4−) anions. Inor Chem. 1985;24(24):4177.CrossRefGoogle Scholar
  35. [35]
    Bobet JL, Pechev S, Chevalier B, Darriet B. Preparation of Mg2Co alloy by mechanical alloying Effects of the synthesis conditions on the hydrogenation characteristics. J Mater Chem. 1999;9(1):315.CrossRefGoogle Scholar
  36. [36]
    Kalinichenka S, Rontzsch L, Baehtz C, Weibgarber T, Kieback B. Hydrogen desorption properties of melt-spun and hydrogenated Mg-based alloys using in situ synchrotron X-ray diffraction and TGA. J Alloys Compd. 2011;509(S2):S629.CrossRefGoogle Scholar
  37. [37]
    Zhang QA, Jiang CJ, Liu DD. Comparative investigations on the hydrogenation characteristics and hydrogen storage kinetics of melt-spun Mg10NiR (R = La, Nd and Sm) alloys. Int J Hydrog Energy. 2012;37(14):10709.CrossRefGoogle Scholar
  38. [38]
    Denys RV, Poletaev AA, Maehlen JP, Solberg JK, Tarasov BP, Yartys VA. Nanostructured rapidly solidified LaMg11Ni alloy. II. In situ synchrotron X-ray diffraction studies of hydrogen absorption–desorption. Int J Hydrog Energy. 2012;7(7):5710.CrossRefGoogle Scholar
  39. [39]
    Kalinichenka S, Rontzsch L, Baehtz C, Kieback B. Hydrogen desorption kinetics of melt-spun and hydrogenated Mg90Ni10 and Mg80Ni10Y10 using in situ synchrotron, X-ray diffraction and thermogravimetry. J Alloys Compd. 2010;496(1–2):608.CrossRefGoogle Scholar
  40. [40]
    Spassov T, Koster U. Hydrogenation of amorphous and nanocrystalline Mg-based alloys. J Alloys Compd. 1999;287(1):243.CrossRefGoogle Scholar
  41. [41]
    Tanaka K, Miwa T, Sasaki K, Kuroda K. TEM studies of nanostructure in melt-spun Mg–Ni–La alloy manifesting enhanced hydrogen desorbing kinetics. J Alloys Compd. 2009;478(1):308.CrossRefGoogle Scholar
  42. [42]
    Lass EA. Hydrogen storage measurements in novel Mg-based nanostructured alloys produced via rapid solidification and devitrification. Int J Hydrog Energy. 2011;36(17):10787.CrossRefGoogle Scholar
  43. [43]
    Wu Y, Lototsky MV, Solberg JK, Yartys VA, Han W, Zhou SX. Microstructure and novel hydrogen storage properties of melt-spun Mg–Ni–Mm alloys. J. Alloys Compd. 2009;477(1–2):262.CrossRefGoogle Scholar
  44. [44]
    Liang G, Boily S, Huot J, Van Neste A, Schulz R. Hydrogen absorption properties of a mechanically milled Mg–50 wt% LaNi5 composite. J Alloys Compd. 1998;268(1–2):302.Google Scholar
  45. [45]
    Skripnyuk V, Buchman E, Rabkin E, Estrin Y, Popov M, Jorgensen S. The effect of equal channel angular pressing on hydrogen storage properties of a eutectic Mg–Ni alloy. J Alloys Compd. 2007;436(1–2):99.CrossRefGoogle Scholar
  46. [46]
    Zou J, Sun H, Zeng X, Ji G, Ding, W. Preparation and hydrogen storage properties of Mg-rich Mg–Ni ultrafine particles. J Nanomaterials. 2012;Article ID:592147.Google Scholar
  47. [47]
    Retuerto M, Alonso JA, Martinez R, Jimenez-Villacorta F, Sanchez-Benitez J, Fernandez-Diaz MT, Garcia-Ramos CA, Ruskov T. Neutron powder diffraction, X-ray absorption and Mössbauer spectroscopy on Mg2FeH6. Int J Hydrog Energy. 2015;40(30):9306.CrossRefGoogle Scholar
  48. [48]
    Zepon G, Leiva DR, Kaufman MJ, Figueroa SJA, Floriano R, Lamas DG, Asselli AAC, Botta WJ. Controlled mechanochemical synthesis and hydrogen desorption mechanisms of nanostructured Mg2CoH5. Int J Hydrog Energy. 2015;40(3):1504.CrossRefGoogle Scholar
  49. [49]
    Reich JM, Wang LL, Johnson DD. Surface and particle-size effects on hydrogen desorption from catalyst-doped MgH2. J Phys Chem C. 2012;116(38):20315.CrossRefGoogle Scholar

Copyright information

© The Nonferrous Metals Society of China and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Materials Science and EngineeringAnhui University of TechnologyMaanshanChina

Personalised recommendations