Rare Metals

, Volume 38, Issue 7, pp 695–703 | Cite as

Preparation and tribological behavior of electrodeposited Ni–W–GO composite coatings

  • Xue-Hui Zhang
  • Xiao-Xian Li
  • Wei-Jiang Liu
  • Yu-Qi Fan
  • Hao Chen
  • Tong-Xiang LiangEmail author


Ni–W–GO composite coatings were successfully plated on 45# steel substrate by co-electrodeposition technique in a Ni–W electrolyte solution, with different contents of graphene oxide (GO) nanoparticles in suspension. The structure, phase composition and surface morphology of as-plated composite coatings were characterized by Raman, X-ray diffraction (XRD), scanning electron microscopy (SEM) attached with energy disperse spectroscopy (EDS), respectively. The hardness and tribological behavior of the present coatings were also evaluated by Vickers Hardness tester and high-speed reciprocating friction and wear tester, and the wear mechanism was discussed as well. The results show that layer-structured GO nanoparticles significantly affect the microstructure and grain size of the Ni–W–GO composite coatings. Meanwhile, GO nanoparticles embedded in Ni–W–GO coatings can obviously improve the hardness and wear resistance in comparison with the corresponding Ni–W coatings. The highest microhardness and wear resistance of Ni–W–GO composite coatings are obtained with 0.15 g·L−1 GO employing.


Ni–W–GO composite coatings Graphene oxide Electrodeposition Microstructure Tribological behavior Microhardness 



This work was financially supported by the Natural Science Foundation of Jiangxi Province (Nos. 20161BAB216121, 20161BAB206136 and GJJ150638) and the National Natural Science Foundation of China (No. 91326203).


  1. [1]
    Hung BL. Synergy between corrosion and wear of electrodeposited Ni–W coating. Tribol Lett. 2013;50(3):407.CrossRefGoogle Scholar
  2. [2]
    Yari S, Dehghanian C. Deposition and characterization of nanocrystalline and amorphous Ni–W coatings with embedded alumina nanoparticles. Ceram Int. 2013;39(7):7759.CrossRefGoogle Scholar
  3. [3]
    Fang XQ, Zhang Y, Zhu KG, Han WJ, Yu JG, Chen Z, Shi HJ. Surface morphology and crystal orientation of electrodeposited tungsten coatings with different pulse parameters. Rare Met. 2018;37(5):407.CrossRefGoogle Scholar
  4. [4]
    Huang Y, Huang F, Zhao WT, Shi K, Zhao L, Wang YL. The study of electroless Ni–W–P alloy plating on glass fibers. Rare Met. 2007;26(4):365.CrossRefGoogle Scholar
  5. [5]
    Allahyarzadeh MH, Aliofkhazraei M, Rezvanian AR, Torabinejad V, Rouhaghdam ARS. Ni–W electrodeposited coatings: characterization, properties and applications. Surf Coat Technol. 2016;307(A):978.CrossRefGoogle Scholar
  6. [6]
    Panagopoulos CN, Plainakis GD, Lagaris DA. Nanocrystalline Ni–W coatings on copper. Mater Sci Eng B. 2011;176(6):477.CrossRefGoogle Scholar
  7. [7]
    Gyawali G, Joshi B, Tripathi K, Lee SW. Preparation of Ni–W–Si3N4 composite coatings and evaluation of their scratch resistance properties. Ceram Int. 2016;42(2):3497.CrossRefGoogle Scholar
  8. [8]
    Beltowska-Lehman E, Indyka P, Bigos A, Szczerba MJ, Guspiel J, Koscielny H. Effect of current density on properties of Ni–W nanocomposite coatings reinforced with zirconia particles. Mater Chem Phys. 2016;173:524.CrossRefGoogle Scholar
  9. [9]
    Liu MX, Huang Z, Ren XR, Zhang XH, Chen H. Friction and wear resistance of Ni–W coatings dispersed by alumina particle. Chin J Rare Met. 2017;41(6):665.Google Scholar
  10. [10]
    Hosseini MG, Abdolmaleki M, Ghahremani J. Investigation of corrosion resistance of electrodeposited Ni–W/SiC composite coatings. Corros Eng Sci Technol. 2014;49(4):247.CrossRefGoogle Scholar
  11. [11]
    Goldasteh H, Rastegari S. The influence of pulse plating parameters on structure and properties of Ni–W–TiO2 nanocomposite coating. Surf Coat Technol. 2014;259:393.CrossRefGoogle Scholar
  12. [12]
    Li H, He Y, He T, Qing DY, Luo FJ, Fan Y, Chen X. Ni–W/BN(h) electrodeposited nanocomposite coating with functionally graded microstructure. J Alloys Compd. 2017;704:32.CrossRefGoogle Scholar
  13. [13]
    Das MK, Li RX, Qin JQ, Zhang XY, Das K, Thueploy A, Limpanart S, Boonyongmaneerat Y, Ma MZ, Liu RP. Effect of electrodeposition conditions on structure and mechanical properties of Ni–W/diamond composite coatings. Surf Coat Technol. 2017;309:337.CrossRefGoogle Scholar
  14. [14]
    Qin JQ, Zhang XY, Umporntheep K, Auejitthavorn V, Li RX, Wangyao P, Boonyongmaneerat Y, Limpanart S, Ma MZ, Liu RP. Electrodeposition and mechanical properties of Ni–W matrix composite coatings with embedded amorphous boron particles. Int J Electrochem Sci. 2016;11(11):9529.CrossRefGoogle Scholar
  15. [15]
    Fan Y, He Y, Luo PY, Shi TH, Li H. Pulse current electrodeposition and characterization of Ni–W–MWCNTs nanocomposite coatings. J Electrochem Soc. 2015;162(7):270.CrossRefGoogle Scholar
  16. [16]
    He LH, Zhao Y, Xing LY, Liu PG, Wang ZY, Zhang YW, Liu XF. Preparation of phosphonic acid functionalized graphene oxide-modified aluminum powder with enhanced anticorrosive properties. Appl Surf Sci. 2017;411:235.CrossRefGoogle Scholar
  17. [17]
    Li J, Zhang C, Wu CJ, Tao Y, Zhang L, Yang QH. Improved performance of Li–Se battery based on a novel dual functional CNTs@graphene/CNTs cathode construction. Rare Met. 2017;36(5):425.CrossRefGoogle Scholar
  18. [18]
    Praveen Kumar CM, Venkatesha TV, Shabadi R. Preparation and corrosion behavior of Ni and Ni–graphene composite coatings. Mater Res Bull. 2013;48(4):1477.CrossRefGoogle Scholar
  19. [19]
    Chen JJ, Li JL, Xiong DS, He Y, Ji YJ, Qin YK. Preparation and tribological behavior of Ni–graphene composite coating under room temperature. Appl Surf Sci. 2016;361:49.CrossRefGoogle Scholar
  20. [20]
    Siokou A, Ravani F, Karakalos S, Frank O, Kalbac M, Galiotis C. Surface refinement and electronic properties of graphene layers grown on copper substrate: an XPS, UPS and EELS study. Appl Surf Sci. 2012;257:9785.CrossRefGoogle Scholar
  21. [21]
    Singh BP, Jena BK, Bhattacharjee S, Besra L. Development of oxidation and corrosion resistance hydrophobic graphene oxide–polymer composite coating on copper. Surf Coat Technol. 2013;232:475.CrossRefGoogle Scholar
  22. [22]
    Pei SF, Cheng HM. The reduction of graphene oxide. Carbon. 2012;50(9):3210.CrossRefGoogle Scholar
  23. [23]
    Kuang D, Xu LY, Liu L, Hu WB, Wu YT. Graphene–nickel composites. Appl Surf Sci. 2013;273:484.CrossRefGoogle Scholar
  24. [24]
    Wu HH, Liu F, Gong WB, Ye FY, Hao LF, Jiang JB, Han S. Preparation of Ni–P–GO composite coatings and its mechanical properties. Surf Coat Technol. 2015;272:25.CrossRefGoogle Scholar
  25. [25]
    Fan Y, He Y, Luo PY, Shi TH, Chen X. Pulse current electrodeposition and properties of Ni–W–GO composite coating. J Electrochem Soc. 2016;163(3):68.CrossRefGoogle Scholar
  26. [26]
    Yu ZX, Di HH, Ma Y, Lv L, Pan Y, Zhang CL, He Y. Fabrication of graphene oxide–alumina hybrids to reinforce the anti-corrosion performance of composite epoxy coating. Appl Surf Sci. 2015;351:986.CrossRefGoogle Scholar
  27. [27]
    Ramalingam S, Muralidharan VS, Subramania A. Electrodeposition and characterization of Cu–TiO2 nanocomposite coatings. J Solid State Electrochem. 2009;13(11):1777.CrossRefGoogle Scholar
  28. [28]
    Li H, He Y, He T, Fan Y, Yang QB, Zhan YQ. The influence of pulse plating parameters on microstructure and properties of Ni–W–Si3N4 nanocomposite coatings. Ceram Int. 2016;42(16):18380.CrossRefGoogle Scholar
  29. [29]
    Sangeetha S, Kalaignan GP. Tribological and electrochemical corrosion behavior of Ni–W/BN (hexagonal) nano-composite coatings. Ceram Int. 2015;41(9):10415.CrossRefGoogle Scholar
  30. [30]
    Makkar P, Mishra DD, Agarwala RC, Agarwala V. A novel electroless plating of Ni–P–Al–ZrO2 nanocomposite coatings and their properties. Ceram Int. 2014;40(8):12013.CrossRefGoogle Scholar
  31. [31]
    Wasekar NP, Latha SM, Ramakrishna M, Rao DS, Sundararajan G. Pulsed electrodeposition and mechanical properties of Ni–W/SiC nano-composite coatings. Mater Des. 2016;112:140.CrossRefGoogle Scholar
  32. [32]
    Allahyarzadeh M, Aliofkhazraei M, Rouhaghdam AS, Torabinejad V. Electrodeposition of multilayer Ni–W and Ni–W–alumina nanocomposite coatings. Surf Eng. 2017;33(5):327.CrossRefGoogle Scholar
  33. [33]
    Archard JF. Contact and rubbing of flat surfaces. J Appl Phys. 1953;24(8):981.CrossRefGoogle Scholar

Copyright information

© The Nonferrous Metals Society of China and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Materials Science and EngineeringJiangxi University of Science and TechnologyGanzhouChina
  2. 2.School of Metallurgy and Chemical EngineeringJiangxi University of Science and TechnologyGanzhouChina

Personalised recommendations