Rare Metals

, Volume 38, Issue 3, pp 189–198 | Cite as

Electrochemical performance of Li-rich cathode material, 0.3Li2MnO3–0.7LiMn1/3Ni1/3Co1/3O2 microspheres with F-doping

  • Ting Liu
  • Shi-Xi ZhaoEmail author
  • Lu-Lu Gou
  • Xia Wu
  • Ce-Wen Nan


Layered F-doped cathode materials 0.3Li2MnO3–0.7LiMn1/3Ni1/3Co1/3O2−xFx (x = 0, 0.01, 0.02, 0.03, 0.04, 0.05) microspheres made up of nanosized primary grains were prepared through co-precipitation method. The sample of x = 0.02 demonstrates a large discharge capacity of 226 mAh·g−1 over 100 cycles at 0.1C and excellent rate performance with discharge capacity of 96 mAh·g−1 at 5.0C and room temperature. Particularly, this material shows much enhanced electrochemical performances even at high temperature of 55 °C. It delivers a quite high discharge capacity of 233.7 mAh·g−1 at 1.0C with capacity retention as high as 97.9% after 100 cycles. The results demonstrate that the fluorine incorporation stabilizes the cathode structure and maintains stable interfacial resistances.


Lithium-ion battery Cathode materials 0.3Li2MnO3–0.7LiMn1/3Ni1/3Co1/3O2−xFx F-doped 



This work was financially supported by the National Natural Science Foundation of China (No. 51372136) and the NSFC-Guangdong United Fund (No. U1401246).


  1. [1]
    Du J, Ouyang M, Chen J. Prospects for Chinese electric vehicle technologies in 2016–2020: ambition and rationality. Energy. 2017;120(S):584.CrossRefGoogle Scholar
  2. [2]
    Luo W, Gaumet JJ, Mai LQ. Antimony-based intermetallic compounds for lithium-ion and sodium-ion batteries: synthesis, construction and application. Rare Met. 2017;36(5):321.CrossRefGoogle Scholar
  3. [3]
    Johnson CS, Li N, Lefief C, Vaughey JT, Thackeray MM. Synthesis, characterization and electrochemistry of lithium battery electrodes: xLi2MnO3·(1−x)LiMn0.333Ni0.333Co0.333O2 (0 ≤ x ≤ 0.7). Chem Mater. 2008;20(19):6095.CrossRefGoogle Scholar
  4. [4]
    Mohanty D, Kalnaus S, Meisner RA, Rhodes KJ, Li J, Payzant EA, Wood DL, Daniel C III. Structural transformation of a lithium-rich Li1.2Co0.1Mn0.55Ni0.15O2 cathode during high voltage cycling resolved by in situ X-ray diffraction. J Power Sources. 2013;229:239.CrossRefGoogle Scholar
  5. [5]
    Chen Z, Yan X, Xu M, Cao K, Zhu H, Li L, Duan J. Building honeycomb-like hollow microsphere architecture in a bubble template reaction for high-performance lithium-rich layered oxide cathode materials. ACS Appl Mater Interfaces. 2017;9(36):30617.CrossRefGoogle Scholar
  6. [6]
    Erickson EM, Sclar H, Schipper F, Liu J, Tian R, Ghanty C, Burstein L, Leifer N, Grinblat J, Talianker M, Shin JY, Lampert JK, Markovsky B, Frenkel AI, Aurbach D. High-temperature treatment of Li-rich cathode materials with ammonia: improved capacity and mean voltage stability during cycling. Adv Energy Mater. 2017;7(18):1700708.CrossRefGoogle Scholar
  7. [7]
    Konishi H, Hirano T, Takamatsu D, Gunji A, Feng X, Furutsuki S, Okumura T, Terada S. Suppression of potential hysteresis between charge and discharge reactions in lithium-rich layer-structured cathode material by increasing nickel/manganese ratio. Solid State Ion. 2017;308:84.CrossRefGoogle Scholar
  8. [8]
    Liu J, Liu J, Wang R, Xia Y. Degradation and structural evolution of xLi2MnO3·(1−x)LiMn1/3Ni1/3Co1/3O2 during cycling. J Electrochem Soc. 2014;161(1):A160.CrossRefGoogle Scholar
  9. [9]
    Simonin L, Colin J-F, Ranieri V, Canevet E, Martin J-F, Bourbon C, Baehtz C, Strobel P, Daniel L, Patoux S. In situ investigations of a Li-rich Mn-Ni layered oxide for Li-ion batteries. J Mater Chem. 2012;22(22):11316.CrossRefGoogle Scholar
  10. [10]
    Yu H, Zhou H. High-energy cathode materials (Li2MnO3–LiMO2) for lithium-ion batteries. J Phys Chem Lett. 2013;4(8):1268.CrossRefGoogle Scholar
  11. [11]
    Ramesha RN, Laisa CP, Ramesha K. Improving electrochemical stability by transition metal cation doping for manganese in lithium-rich layered cathode, Li1.2Ni0.13Co0.13Mn0.54−xMxO2 (M = Co, Cr and Fe). Electrochim Acta. 2017;249:377.CrossRefGoogle Scholar
  12. [12]
    Wei W, Chen L, Pan A, Ivey DG. Roles of surface structure and chemistry on electrochemical processes in lithium-rich layered oxide cathodes. Nano Energy. 2016;30:580.CrossRefGoogle Scholar
  13. [13]
    Ding F, Li J, Deng F, Xu G, Liu Y, Yang K, Kang F. Surface heterostructure induced by PrPO4 modification in Li1.2Mn0.54Ni0.13Co0.13O2 cathode material for high-performance lithium-ion batteries with mitigating voltage decay. ACS Appl Mater Interfaces. 2017;9(33):27936.CrossRefGoogle Scholar
  14. [14]
    Zhang N, Li Y. Lithium-rich layered oxides as cathode materials: structures, capacity origin mechanisms and modifications. Prog Chem. 2017;29(4):373.Google Scholar
  15. [15]
    Wang Z, Lu HQ, Yin YP, Sun XY, Bai XT, Shen XL, Zhuang WD, Lu SG. FePO4-coated Li[Li0.2Ni0.13Co0.13Mn0.54]O2 with improved cycling performance as cathode material for Li-ion batteries. Rare Met. 2017;36(11):899.CrossRefGoogle Scholar
  16. [16]
    Chen S, Chen L, Li Y, Su Y, Lu Y, Bao L, Wang J, Wang M, Wu F. Synergistic effects of stabilizing the surface structure and lowering the interface resistance in improving the low-temperature performances of layered lithium-rich materials. ACS Appl Mater Interfaces. 2017;9(10):8641.CrossRefGoogle Scholar
  17. [17]
    An J, Shi L, Chen G, Li M, Liu H, Yuan S, Chen S, Zhang D. Insights into the stable layered structure of a Li-rich cathode material for lithium-ion batteries. J Mater Chem A. 2017;5(37):19738.CrossRefGoogle Scholar
  18. [18]
    Kapylou A, Song JH, Missiul A, Ham DJ, Kim DH, Moon S, Park JH. Improved thermal stability of Li-rich layered oxide by fluorine doping. Chemphyschem Eur J Chem Phys Phys Chem. 2017;19(1):116.CrossRefGoogle Scholar
  19. [19]
    Tian Z, Wang J, Liu S, Li Q, Zeng G, Yang Y, Cui Y. Na-stabilized Ru-based lithium rich layered oxides with enhanced electrochemical performance for lithium ion batteries. Electrochim Acta. 2017;253:31.CrossRefGoogle Scholar
  20. [20]
    Chen Y, Zheng C, Chen Z, Xie K. The significance of the stable Rhombohedral structure in Li-rich cathodes for lithium-ion batteries. Ionics. 2017;23(2):367.CrossRefGoogle Scholar
  21. [21]
    Wang J, He X, Paillard E, Laszczynski N, Li J, Passerini S. Lithium- and manganese-rich oxide cathode materials for high-energy lithium ion batteries. Adv Energy Mater. 2016;6(21):1600906.CrossRefGoogle Scholar
  22. [22]
    Zhao Y, Liu J, Wang S, Ji R, Xia Q, Ding Z, Wei W, Liu Y, Wang P, Ivey DG. Surface structural transition induced by gradient polyanion-doping in Li-rich layered oxides: implications for enhanced electrochemical performance. Adv Funct Mater. 2016;26(26):4760.CrossRefGoogle Scholar
  23. [23]
    Yu C, Li G, Guan X, Zheng J, Luo D, Li L. The impact of upper cut-off voltages on the electrochemical behaviors of composite electrode 0.3LiMnO3·0.7LiMn1/3Ni1/3Co1/3O2. Phys Chem Chem Phys. 2012;14(35):12368.CrossRefGoogle Scholar
  24. [24]
    Guo B, Zhao J, Fan X, Zhang W, Li S, Yang Z, Chen Z, Zhang W. Aluminum and fluorine co-doping for promotion of stability and safety of lithium-rich layered cathode material. Electrochim Acta. 2017;236:171.CrossRefGoogle Scholar
  25. [25]
    Zheng J, Wu X, Yang Y. Improved electrochemical performance of Li0.2Mn0.54Ni0.13Co0.13O2 cathode material by fluorine incorporation. Electrochim Acta. 2013;105:200.CrossRefGoogle Scholar
  26. [26]
    Kang S-H, Amine K. Layered Li (Li0.2Ni0.15 + 0.5zCo0.10Mn0.55−0.5z)O2−zFz cathode materials for Li-ion secondary batteries. J Power Sources. 2005;146(1):654.CrossRefGoogle Scholar
  27. [27]
    Oh SW, Park SH, Kim JH, Bae YC, Sun YK. Improvement of electrochemical properties of LiNi0.5Mn1.5O4 spinel material by fluorine substitution. J Power Sources. 2006;157(1):464.CrossRefGoogle Scholar
  28. [28]
    West W, Staniewicz R, Ma C, Robak J, Soler J, Smart M, Ratnakumar B. Implications of the first cycle irreversible capacity on cell balancing for Li2MnO3–LiMO2 (M = Ni, Mn, Co) Li-ion cathodes. J Power Sources. 2011;196(22):9696.CrossRefGoogle Scholar
  29. [29]
    Deng Z, Manthiram A. Influence of cationic substitutions on the oxygen loss and reversible capacity of lithium-rich layered oxide cathodes. J Phys Chem C. 2011;115(14):7097.CrossRefGoogle Scholar
  30. [30]
    Liu H, Fell CR, An K, Cai L, Meng YS. In-situ neutron diffraction study of the xLi2MnO3·(1−x)LiMO2 (x = 0, 0.5; M = Ni, Mn, Co) layered oxide compounds during electrochemical cycling. J Power Sources. 2013;240:772.CrossRefGoogle Scholar
  31. [31]
    Liu T, Zhao SX, Wang K, Nan CW. CuO-coated Li[Ni0.5Co0.2Mn0.3]O2 cathode material with improved cycling performance at high rates. Electrochim Acta. 2012;85:605.CrossRefGoogle Scholar
  32. [32]
    Nobili F, Croce F, Scrosati B, Marassi R. Electronic and electrochemical properties of LixNi1−yCoyO2 cathodes studied by impedance spectroscopy. Chem Mater. 2001;13(5):1642.CrossRefGoogle Scholar
  33. [33]
    Lu Z, Dahn JR. Understanding the anomalous capacity of Li/Li [NixLi(1/3−2x/3)Mn(2/3−x/3)]O2 cells using in situ X-ray diffraction and electrochemical studies. J Electrochem Soc. 2002;149(7):A815.CrossRefGoogle Scholar

Copyright information

© The Nonferrous Metals Society of China and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Graduate School at ShenzhenTsinghua UniversityShenzhenChina
  2. 2.School of Materials Science and EngineeringTsinghua UniversityBeijingChina

Personalised recommendations