Advertisement

Rare Metals

pp 1–12 | Cite as

Stress field interaction during propagation of adjacent tensile twinning nuclei in magnesium

  • Zhe Li
  • Ben Xu
  • Qi Sun
  • Qiu-Lin Li
  • Wei Liu
Article
  • 40 Downloads

Abstract

The shear stress field proximity to the twinning and prismatic/basal interfaces of {\( \overline{1} \)012} tensile twins is shown by molecular dynamics simulations. The stress field interacts and influences the twinning growth mode in the subsequent deformation process, which is simulated by changing the relative positions of the nuclei. An asymmetrical growth mode appears, in which the growth of one twin is predominant over the other when they are oriented at 45° to each other. This growth mode is sensitive to the simulation temperature and strain rate and can be attributed to the interaction of the stress field proximity to the prismatic/basal interfaces and twinning planes.

Keywords

Twinning Twin–twin interaction Stress field Molecular dynamics Magnesium 

Notes

Acknowledgements

This study was financially supported by the National Natural Science Foundation of China (No. 51301094).

Supplementary material

12598_2018_1142_MOESM1_ESM.doc (622 kb)
Supplementary material 1 (DOC 621 kb)

References

  1. [1]
    Chen Q, Xia XS, Yuan BG, Shu DY, Zhao ZD, Han JC. Hot workfability behavior of as-cast Mg–Zn–Y–Zr alloy. Mater Sci Eng A. 2014;593:38.CrossRefGoogle Scholar
  2. [2]
    Yang HM, Zhang NY, Liu N, Xie WD, Peng XD. Microstructure, mechanical properties, and corrosion resistance of Mg–9Li–3Al–1.6Y alloy. Rare Met. 2016;35(5):374.CrossRefGoogle Scholar
  3. [3]
    Chen Q, Yuan BG, Lin J, Xia XS, Zhao ZD, Shu DY. Comparisons of microstructure, thixoformability and mechanical properties of high performance wrought magnesium alloys reheated from the as-cast and extruded states. J Alloys Compd. 2014;584:63.CrossRefGoogle Scholar
  4. [4]
    Zheng XB, Liu K, Wang ZH, Li SB, Du WB. Microstructural control and hardening response of Mg–6Zn–0.5Er–0.5Ca alloy. Rare Met. 2016;35(7):526.CrossRefGoogle Scholar
  5. [5]
    Qiu X, Yang Q, Guan K, Bu FQ, Cao ZY, Liu YB, Meng J. Microstructures and tensile properties of Mg–Zn–(Gd)–Zr alloys extruded at various temperatures. Rare Met. 2017;36(12):962.CrossRefGoogle Scholar
  6. [6]
    Chen Q, Shu DY, Hu CK, Zhao ZD, Yuan BG. Grain refinement in an as-cast AZ61 magnesium alloy processed by multi-axial forging under the multitemperature processing procedure. Mater Sci Eng A. 2012;541:98.CrossRefGoogle Scholar
  7. [7]
    Christian JW, Mahajan S. Deformation twinning. Prog Mater Sci. 1995;39(1):1.CrossRefGoogle Scholar
  8. [8]
    Thompson N, Millard DJ. XXXVIII. Twin formation, in cadmium. Lond Edinb Dublin Philos Mag J Sci. 1952;43(339):422.CrossRefGoogle Scholar
  9. [9]
    Mendelson S. Dislocation dissociations in hcp metals. J Appl Phys. 1970;41(5):1893.CrossRefGoogle Scholar
  10. [10]
    Li B, Ma E. Atomic shuffling dominated mechanism for deformation twinning in magnesium. Phys Rev Lett. 2009;103(3):035503.CrossRefGoogle Scholar
  11. [11]
    Serra A, Bacon DJ, Pond RC. The crystallography and core structure of twinning dislocations in H.C.P. metals. Acta Metall. 1988;36(12):3183.CrossRefGoogle Scholar
  12. [12]
    Serra A, Pond RC, Bacon DJ. Computer simulation of the structure and mobility of twinning dislocations in H.C.P. metals. Acta Metall Mater. 1991;39(7):1469.CrossRefGoogle Scholar
  13. [13]
    Zhang XY, Li B, Wu XL, Zhu YT, Ma Q, Liu Q, Wang PT, Horstemeyer MF. Twin boundaries showing very large deviations from the twinning plane. Scr Mater. 2012;67(10):862.CrossRefGoogle Scholar
  14. [14]
    Zhang D, Zheng B, Zhou Y, Mahajan S, Lavernia EJ. Prism stacking faults observed contiguous to a {10\( \overline{1} \)2} twin in a Mg-Y alloy. Scr Mater. 2014;76:61.Google Scholar
  15. [15]
    Sun Q, Zhang XY, Ren Y, Tu J, Liu Q. Interfacial structure of {10\( \overline{1} \)2} twin tip in deformed magnesium alloy. Scr Mater. 2014;90–91:41.Google Scholar
  16. [16]
    Xu B, Capolungo L, Rodney D. On the importance of prismatic/basal interfaces in the growth of (\( \overline{1}012 \)) twins in hexagonal close packed crystals. Scr Mater. 2013;68(11):901.Google Scholar
  17. [17]
    Oppedal AL, El Kadiri H, Tomé CN, Kaschner GC, Vogel SC, Baird JC, Horstemeyer MF. Effect of dislocation transmutation on modeling hardening mechanisms by twinning in magnesium. Int J Plast. 2012;30–31:41.CrossRefGoogle Scholar
  18. [18]
    El Kadiri H, Kapil J, Oppedal AL, Hector LG, Agnew SR, Cherkaoui M, Vogel SC. The effect of twin–twin interactions on the nucleation and propagation of twinning in magnesium. Acta Mater. 2013;61(10):3549.CrossRefGoogle Scholar
  19. [19]
    Morrow BM, Cerreta EK, McCabe RJ, Tomé CN. Toward understanding twin–twin interactions in Hcp metals: utilizing multiscale techniques to characterize deformation mechanisms in magnesium. Mater Sci Eng A. 2014;613:365.CrossRefGoogle Scholar
  20. [20]
    Sun Q, Zhang XY, Ren Y, Tan L, Tu J. Observations on the intersection between {10\( \overline{1} \)2} twin variants sharing the same zone axis in deformed magnesium alloy. Mater Charact. 2015;109:160.Google Scholar
  21. [21]
    Hong S, Park SH, Lee CS. Role of {10\( \overline{1} \)2} twinning characteristics in the deformation behavior of a polycrystalline magnesium alloy. Acta Mater. 2010;58(18):5873.Google Scholar
  22. [22]
    Hong S, Park SH, Lee CS. Strain path dependence of {10\( \overline{1} \)2} twinning activity in a polycrystalline magnesium alloy. Scr Mater. 2011;64(2):145.Google Scholar
  23. [23]
    Ma Q, El Kadiri H, Oppedal AL, Baird JC, Li B, Horstemeyer MF, Vogel SC. Twinning effects in a rod-textured AM30 magnesium alloy. Int J Plast. 2012;29:60.CrossRefGoogle Scholar
  24. [24]
    Yu Q, Wang J, Jiang Y, McCabe RJ, Li N, Tomé CN. Twin–twin interactions in magnesium. Acta Mater. 2014;77(4):28.CrossRefGoogle Scholar
  25. [25]
    Beyerlein IJ, Capolungo L, Marshall PE, McCabe RJ, Tomé CN. Statistical analyses of deformation twinning in magnesium. Philos Mag. 2010;90(16):2161.CrossRefGoogle Scholar
  26. [26]
    Barnett MR, Nave MD, Ghaderi A. Yield point elongation due to twinning in a magnesium alloy. Acta Mater. 2012;60(4):1433.CrossRefGoogle Scholar
  27. [27]
    Guo C, Xin R, Ding C, Song B, Liu Q. Understanding of variant selection and twin patterns in compressed Mg alloy sheets via combined analysis of Schmid factor and strain compatibility factor. Mater Sci Eng A. 2014;609:92.CrossRefGoogle Scholar
  28. [28]
    Niezgoda SR, Kanjarla AK, Beyerlein IJ, Tomé CN. Stochastic modeling of twin nucleation in polycrystals: an application in hexagonal close-packed metals. Int J Plast. 2014;56(5):119.CrossRefGoogle Scholar
  29. [29]
    Shi Z, Zhang Y, Wagner F, Juan P, Berbenni S, Capolungo L, Lecomte J, Richeton T. On the selection of extension twin variants with low Schmid factors in a deformed Mg alloy. Acta Mater. 2015;83:17.CrossRefGoogle Scholar
  30. [30]
    Guo C, Xin R, Xu J, Song B, Liu Q. Strain compatibility effect on the variant selection of connected twins in magnesium. Mater Des. 2015;76:71.CrossRefGoogle Scholar
  31. [31]
    Eshelby JD. The determination of the elastic field of an ellipsoidal inclusion, and related problems. Proc R Soc A. 1957;241(1226):376.CrossRefGoogle Scholar
  32. [32]
    Liu X, Adams JB, Ercolessi F, Moriarty JA. EAM potential for magnesium from quantum mechanical forces. Model Simul Mater Sci Eng. 1996;4(3):293.CrossRefGoogle Scholar
  33. [33]
    Li J. AtomEye: an efficient atomistic configuration viewer. Model Simul Mater Sci Eng. 2003;11(2):173.CrossRefGoogle Scholar
  34. [34]
    Beyerlein IJ, McCabe RJ, Tomé CN. Effect of microstructure on the nucleation of deformation twins in polycrystalline high-purity magnesium: a multi-scale modeling study. J Mech Phys Solids. 2011;59(5):988.CrossRefGoogle Scholar
  35. [35]
    Leclercq L, Capolungo L, Rodney D. Atomic-scale comparison between twin growth mechanisms in magnesium. Mater Res Lett. 2014;2(3):152.CrossRefGoogle Scholar
  36. [36]
    Pi ZP, Fang QH, Liu B, Feng H, Liu Y, Liu YW, Wen PH. A phase field study focuses on the transverse propagation of deformation twinning for hexagonal-closed packed crystals. Int J Plast. 2016;76(5):130.CrossRefGoogle Scholar
  37. [37]
    Wang YN, Huang JC. The role of twinning and untwinning in yielding behavior in hot-extruded Mg–Al–Zn alloy. Acta Mater. 2007;55(3):897.CrossRefGoogle Scholar
  38. [38]
    Zhu SQ, Yan HG, Liao XZ, Moody SJ, Sha G, Wu YZ, Ringer SP. Mechanisms for enhanced plasticity in magnesium alloys. Acta Mater. 2015;82:344.CrossRefGoogle Scholar
  39. [39]
    Misseroni D, Dal Corso F, Shahzad S, Bigoni D. Stress concentration near stiff inclusions: validation of rigid inclusion model and boundary layers by means of photoelasticity. Eng Fract Mech. 2014;121–122:87.CrossRefGoogle Scholar
  40. [40]
    Yu Q, Qi L, Chen K, Mishra RK, Li J, Minor AM. The nanostructured origin of deformation twinning. Nano Lett. 2012;12(2):887.CrossRefGoogle Scholar

Copyright information

© The Nonferrous Metals Society of China and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Materials Science and EngineeringTsinghua UniversityBeijingChina
  2. 2.Daya Bay Nuclear Power Plant, China Nuclear Power Engineering Co., LtdShenzhenChina
  3. 3.Joint Laboratory of Nuclear Materials and Service Safety, Graduate School at ShenzhenTsinghua UniversityShenzhenChina

Personalised recommendations