Rare Metals

pp 1–5 | Cite as

Dielectric and energy storage properties of PbO–SrO–Nb2O5–Na2O–Si thin films by annealing

  • Fei-Hu Tan
  • Qing-Meng Zhang
  • Feng Wei
  • Hong-Bin Zhao
  • Xiao Zhang
  • Jun DuEmail author


Dielectric and energy storage properties of PbO–SrO–Na2O–Nb2O5–SiO2 (PSNNS) thin films with annealing temperature from 700 to 850 °C were investigated by measuring their capacitance-electric filed curve and hysteresis loops. The results show that the highest dielectric constant and energy density are 81.2 and 17.0 J·cm−3, respectively, which is obtained in the sample with annealing temperature of 800 °C. Annealed from 700 to 800 °C, the dielectric constant and energy storage performance of PSNNS films are continuously improved. However, with annealing temperature up to 850 °C, their dielectric constant decreases, which might be related with the removal of interfacial defects as a function of annealing temperature. Defect is one of the causes of space charge phenomenon, resulting in the increase in dielectric constant. Moreover, the microstructure analysis by X-ray diffraction (XRD) and transmission electron microscope (TEM) indicates that the change of crystallization phase and interfacial polarization takes responsibility to the results.


Thin film Pulse laser deposition Annealing temperature Energy storage density 



This study was financially supported by the National Natural Science Foundation of China (No. 51477012) and Beijing Nova Program (No. xx2016046).


  1. [1]
    Zhang HL, Chen XF, Cao F, Wang GS, Dong XL. Charge–discharge properties of an anti-ferroelectric ceramics capacitor under different electric fields. J Am Ceram Soc. 2010;93(12):4015.CrossRefGoogle Scholar
  2. [2]
    Patra BC, Khilari S, Satyanarayana L, Pradhan D, Bhaumik A. A new benzimidazole based covalent organic polymer having high energy storage capacity. Chem Commun. 2016;52(48):7592.CrossRefGoogle Scholar
  3. [3]
    Zhang Y, Huang JJ, Ma T, Wang XR, Deng CS, Dai XM. Sintering temperature dependence of energy-storage properties in (Ba, Sr)TiO3 glass-ceramics. J Am Ceram Soc. 2011;94(6):1805.CrossRefGoogle Scholar
  4. [4]
    Pan ZB, Yao LM, Zhai JW, Liu SH, Yang K, Wang HT, Liu JH. Fast discharge and high energy density of nanocomposite capacitors using Ba0.6Sr0.4TiO3 nanofibers. Ceram Int. 2016;42(13):14667.CrossRefGoogle Scholar
  5. [5]
    Li J, Claude J, Norena-Franco LE, Seok SI, Wang Q. Electrical energy storage in ferroelectric polymer nanocomposites containing surface-functionalized BaTiO3 nanoparticles. Chem Mater. 2008;20(20):6304.CrossRefGoogle Scholar
  6. [6]
    Chen J, Zhang Y, Deng C, Dai X, Li L. Effect of the Ba/Ti ratio on the microstructures and dielectric properties of barium titanate-based glass-ceramics. J Am Ceram Soc. 2009;92(6):1350.CrossRefGoogle Scholar
  7. [7]
    Gorzkowski EP, Pan MJ, Bender B, Wu CCM. Glass-ceramics of barium strontium titanate for high energy density capacitors. J Electroceram. 2007;18(3–4):269.CrossRefGoogle Scholar
  8. [8]
    Chen J, Zhang Y, Deng C, Dai X. Improvement in the microstructures and dielectric properties of barium strontium titanate glass–ceramics by AlF3/MnO2 addition. J Am Ceram Soc. 2009;92(8):1863.CrossRefGoogle Scholar
  9. [9]
    Zhang G, Zhu D, Zhang X, Zhang L, Yi J, Xie B, Jiang S. High energy storage performance of (Pb0.87Ba0.1La0.02)(Zr0.68Sn0.24Ti0.08) O3 antiferroelectric ceramics fabricated by the hot-press sintering method. J Am Ceram Soc. 2015;98(4):1175.CrossRefGoogle Scholar
  10. [10]
    Xue S, Liu S, Zhang W, Shen B, Zhai J. Correlation of energy conversion efficiency and interface polarization in niobate glass-ceramic for energy-storage applications. Appl Phys Lett. 2015;106(16):162903.CrossRefGoogle Scholar
  11. [11]
    Wang T, Jin L, Shu L, Hu Q, Wei X. Energy storage properties in Ba0.4Sr0.6TiO3 ceramics with addition of semi-conductive BaO–B2O3–SiO2–Na2CO3–K2CO3 glass. J Alloys Compd. 2014;617:399.CrossRefGoogle Scholar
  12. [12]
    Zhang W, Xue S, Liu S, Wang J, Shen B, Zhai J. Structure and dielectric properties of BaxSr1−xTiO3-based glass ceramics for energy storage. J Alloys Compd. 2014;617:740.CrossRefGoogle Scholar
  13. [13]
    Zhou Y, Qiao Y, Tian Y, Wang K, Li G, Chai Y. Improvement in structural, dielectric and energy-storage properties of lead-free niobate glass-ceramic with Sm2O3. J Eur Ceram Soc. 2017;37(3):995.CrossRefGoogle Scholar
  14. [14]
    Liu W, Mao CH, Dong GX, Du J. Effects of PbO and SrO contents on crystallization and dielectric properties of PbO–SrO–Na2O–Nb2O5–SiO2 glass-ceramics system. Ceram Int. 2009;35(3):1261.CrossRefGoogle Scholar
  15. [15]
    Luo J, Du J, Tang Q, Mao CH. Lead sodium niobate glass-ceramic dielectrics and internal electrode structure for high energy storage density capacitors. IEEE Trans Electron Dev. 2008;55(12):3549.CrossRefGoogle Scholar
  16. [16]
    Huang WC, Yuan J, Zhang JG, Liu JW, Wang H, Ouyang LZ, Zhu M. Improving dehydrogenation properties of Mg/Nb composite films via tuning Nb distributions. Rare Met. 2017;36(7):574.CrossRefGoogle Scholar
  17. [17]
    Zhao XH, Wang YR, Chen YZ, Jiang HC, Zhang WL. Enhanced thermoelectric property and stability of NiCr–NiSi thin film thermocouple on superalloy substrate. Rare Met. 2017;36(6):512.CrossRefGoogle Scholar
  18. [18]
    Zhu GS, Xu HR, Li JJ, Wang P, Zhang XY, Chen YD, Yan DL, Yu AB. Study on the influence of powder size on the properties of BTS/ITO thin film by RF sputtering from powder target. Mater Lett. 2017;194:90.CrossRefGoogle Scholar
  19. [19]
    Wang GL, Shan LW, Wu Z, Dong LM. Enhanced photocatalytic properties of molybdenum-doped BiVO4 prepared by sol–gel method. Rare Met. 2017;36(2):129.CrossRefGoogle Scholar
  20. [20]
    Zhang Y, Huang J, Ma T, Wang X, Deng C, Dai X. Sintering temperature dependence of energy-storage properties in (Ba, Sr) TiO3 glass-ceramics. J Am Ceram Soc. 2011;94(6):1805.CrossRefGoogle Scholar
  21. [21]
    Goswami A, Dhandaria P, Pal S, McGee R, Khan F, Antić Ž, Gaikwad R, Prashanthi K, Thundat T. Effect of interface on mid-infrared photothermal response of MoS2 thin film grown by pulsed laser deposition. Nano Res. 2017;10(10):3571.CrossRefGoogle Scholar
  22. [22]
    Han S, Liu SM, Lu YM, Cao PJ, Liu WJ, Zeng YX, Jia F, Liu XK, Zhu DL. High performance solar-blind ultraviolet photo detector based on mixed-phase MgZnO thin film with different interfaces deposited by PLD method. J Alloys Compd. 2017;694:168.CrossRefGoogle Scholar
  23. [23]
    Zhou C, Newns DM. Intrinsic dead layer effect and the performance of ferroelectric thin film capacitors. J Appl Phys. 1997;82(6):3081.CrossRefGoogle Scholar
  24. [24]
    Gagou Y, Belhadi J, Asbani B, Marssi MEI, Dellis JL, Yuzyuk YI, Scott JF. Intrinsic dead layer effects in relaxed epitaxial BaTiO3 thin film grown by pulsed laser deposition. Mater Des. 2017;122:157.CrossRefGoogle Scholar
  25. [25]
    Kumar CA, Pamu D. Dielectric, optical and electric studies on nanocrystalline Ba5Nb4O15 thin films deposited by RF magnetron sputtering. Appl Surf Sci. 2015;340:56.CrossRefGoogle Scholar
  26. [26]
    Cho CR, Lee WJ, Yu BG, Kim BW. Dielectric and ferroelectric response as a function of annealing temperature and film thickness of sol–gel deposited Pb (Zr0.52Ti0.48)O3 thin film. J Appl Phys. 1999;86(5):2700.CrossRefGoogle Scholar
  27. [27]
    Pan H, Zeng Y, Shen Y, Lin YH, Ma J, Li L, Nan CW. BiFeO3–SrTiO3 thin film as a new lead-free relaxor-ferroelectric capacitor with ultrahigh energy storage performance. J Mater Chem A. 2017;5(12):5920.CrossRefGoogle Scholar
  28. [28]
    Yang BB, Guo MY, Song DP, Tang XW, Wei RH, Hu L, Yang J, Song WH, Dai MJ, Lou XJ, Zhu XB. Bi3.25La0.75Ti3O12 thin film capacitors for energy storage applications. Appl Phys Lett. 2017;111(18):183903.CrossRefGoogle Scholar
  29. [29]
    Yan KL, Fan RH, Chen M, Sun K, Wang XA, Hou Q, Yu MX. An impregnation-reduction method to prepare graphite nanosheet/alumina composites and its high-frequency dielectric properties. Rare Met. 2017;36(3):205.CrossRefGoogle Scholar
  30. [30]
    Ren Y, Zhu X, Zhang C, Zhu J, Zhu J, Xiao D. High stable dielectric permittivity and low dielectric loss in sol–gel derived BiFeO3 thin films. Ceram Int. 2014;40(1):2489.CrossRefGoogle Scholar

Copyright information

© The Nonferrous Metals Society of China and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.State Key Laboratory of Advanced Materials for Smart SensingGeneral Research Institute for Nonferrous MetalsBeijingChina
  2. 2.Advanced Electronic Materials InstituteGeneral Research Institute for Nonferrous MetalsBeijingChina

Personalised recommendations