Rare Metals

pp 1–7 | Cite as

Electrocatalytic characterization of Ni–Fe–TiO2 overlayers for hydrogen evolution reaction in alkaline solution

  • Jing-Guo Zhang
  • Qiang HuEmail author
  • Shao-Ming Zhang
  • Shuo Li
  • Fei Ma
  • Fan-Cai Chen
  • Ya-Ling Wang
  • Li-Min Wang


The Ni–Fe–TiO2 overlayers on mild steel strips were prepared by electrochemical deposition. The layers were characterized morphologically by confocal laser scanning microscopy and scanning electron microscopy (SEM) coupled with energy-dispersive spectroscopy (EDS) analysis. The layers exhibit a quasi-three-dimensional (3D) morphology in which the crystalline, TiO2, is embedded. Electrocatalytic activity of the Ni–Fe–TiO2 layers for the hydrogen evolution reaction (HER) was assessed by using pseudo-steady-state polarization curves and electrochemical impedance spectroscopy (EIS) in alkaline solution. The results were compared with the properties of Ni–Fe electrodes and used for determining the mechanism and kinetics of HER. In comparison with Ni–Fe electrodes, the synthesized Ni–Fe–TiO2 electrodes present higher catalytic activity for HER due to the increase in the real surface area and high intrinsic electrocatalytic activity of titanium dioxide. The present study provides valuable insight for exploring practical applications of Ni-based alloys as hydrogen evolution electrodes.


Ni–Fe–TiO2 Hydrogen evolution reaction Electrodeposition Electrocatalytic activity 



This study was financially supported by the Program of International S&T Cooperation of China (No. 2014DFR51130), the Science and Technology Planning Project of Beijing (No. Z161100001116080) and the Science and Technology Major Project of Beijing (No. Z171100002017014).


  1. [1]
    Cui YM, Jiang XY, Xiao Y, Li HQ, Miao H. Preparation of copmosite catalyst SiC–Cla2S4 and its application in photocatalytic decomposition of water hydrogen production. Chin J Rare Metals. 2017;41(1):102.Google Scholar
  2. [2]
    And AG, Walendiewski J. Photocatalytic water splitting over Pt–TiO2 in the presence of sacrificial reagents. Energy Fuels. 2005;19(3):1143.CrossRefGoogle Scholar
  3. [3]
    Wang JW, Wang YF, Zhang JG. Optimization of electrocatalytic properties of NiMoCo foam electrode for water electrolysis by post-treatment processing. Rare Met. 2015;34(11):1.CrossRefGoogle Scholar
  4. [4]
    Yu YL, Zhang JG, Xiao W. First-principles study of surface segregation in bimetallic Ni3M (M = Mo Co, Fe) alloys with chemisorbed atomic oxygen. Phys Status Solidi B Basic Solid State Phys. 2017;254(6):1600810.CrossRefGoogle Scholar
  5. [5]
    Momirlan M, Veziroglu T. The properties of hydrogen as fuel tomorrow in sustainable energy system for a cleaner planet. Int J Hydrog Energy. 2005;30(7):795.CrossRefGoogle Scholar
  6. [6]
    Zeng K, Zhang DK. Recent progress in alkaline water electrolysis for hydrogen production and applications. Prog Energy Combust Sci. 2010;36(3):307.CrossRefGoogle Scholar
  7. [7]
    Tang C, Pu ZH, Liu Q, Asiri AM, Luo YL, Sun XP. Ni3S2 nanosheets array supported on Ni foam: a novel efficient three-dimensional hydrogen-evolving electrocatalyst in both neutral and basicsolutions. Int J Hydrog Energy. 2015;40(14):4727.CrossRefGoogle Scholar
  8. [8]
    Kondoh M, Yokoyama N, Inazumi C, Maezawa S, Fujiwara N, Nishimura Y, Oguro K, Takenaka H. Development of solid polymer-electrolyte water electrolyser. J New Mater Electrochem Syst. 2000;3(1):61.Google Scholar
  9. [9]
    Miousse D, Lasia A. Hydrogen evolution reaction on RuO2 electrodes in alkaline solutions. J New Mater Electrochem Syst. 1999;2(1):71.Google Scholar
  10. [10]
    Gong M, Zhou W, Tsai MC, Zhou JG, Guan MY, Lin MC, Zhang B, Hu YF, Wang DY, Yang J, Stephen J, Hwang B, Dai HJ. Nanoscale nickel oxide/nickel heterostructures for active hydrogen evolution electrocatalysis. Nature. Communications. 2014;5(5):4695.Google Scholar
  11. [11]
    Diard JP, Legorrec B, Maximovich S. Etude de l’activation du degagement d’hydrogene sur electrode d’oxyde de nicke par spectroscopie d’impedance. Electrochim Acta. 1990;35(6):099.CrossRefGoogle Scholar
  12. [12]
    Endoh E, Otouma H, Morimoto T, Oda Y. New Raney nickel composite-coated electrode for hydrogen evolution. Int J Hydrog Energy. 1987;12(7):473.CrossRefGoogle Scholar
  13. [13]
    Choquette Y, Brossard L, Lasia A, Menard H. Study of the kinetics of hydrogen evolution reaction on raney nickel composite-coated electrode by AC impedance technique. J Electrochem Soc. 1990;137(6):1723.CrossRefGoogle Scholar
  14. [14]
    Choquette Y, Brossard L, Lasia A, Ménard H. Investigation of hydrogen evolution on Raney-nickel composite-coated electrodes. Electrochim Acta. 1990;35(8):1251.CrossRefGoogle Scholar
  15. [15]
    Conway BE, Bockris JO. Electrolytic hydrogen evolution kinetics and its relation to the electronic and adsorptive properties of the metal. J Chem Phys. 1957;26(3):532.CrossRefGoogle Scholar
  16. [16]
    Highfield JG, Claude E, Oguro K. Electrocatalytic synergism in Ni/Mo cathodes for hydrogen evolution in acid medium: a new model. Electrochim Acta. 1999;44(16):2805.CrossRefGoogle Scholar
  17. [17]
    Tang C, Cheng YN, Pu ZH, Xing W, Sun XP. NiSe nanowire film supported on nickel foam: an efficient and stable 3D bifunctional electrode for full water splitting. Angew Chem. 2015;127(32):9483.CrossRefGoogle Scholar
  18. [18]
    Yan XD, Tian LH, He M, Chen XB. Three-dimensional crystalline/amorphous Co/Co3O4 core/shell nanosheets as efficient electrocatalysts for the hydrogen evolution reaction. Nano Lett. 2015;15(9):6015.CrossRefGoogle Scholar
  19. [19]
    Jafariana M, Azizi O, Gobal F, Mahjani MG. Kinetics and electrocatalytic behavior of nanocrystalline CoNiFe alloy in hydrogen evolution reaction. Int J Hydrog Energy. 2007;32(12):1686.CrossRefGoogle Scholar
  20. [20]
    Gao CH, Li N. Hydrogen evolution reaction activity of electrodeposited amorphous/nanocrystalline Ni–Mo–La alloy electrode. Chin J Nonferr Metals. 2011;21(11):2819.Google Scholar
  21. [21]
    Hidaka H, Zhao J, Pelizzetti E, Serpone N. Photodegradation of surfactants. 8. Comparison of photocatalytic processes between anionic DBS and cationic BDDAC on the titania surface. J Phys Chem. 1992;96(5):2226.CrossRefGoogle Scholar
  22. [22]
    Dibble LA, Raupp GB. Kinetics of the gas–solid heterogeneous photocatalytic oxidation of trichloroethylene by near UV illuminated titanium dioxide. Catal Lett. 1990;4(4–6):345.CrossRefGoogle Scholar
  23. [23]
    Rashkov R, Arnaudova M, Avdeeu G, Zielonka A, Jannakoudakis P, Jannakoudakis A, Theodoridou E. NiW/TiOx composite layers as cathode material for hydrogen eolution reacion. Int J Hydrog Energy. 2009;34(5):2095.CrossRefGoogle Scholar
  24. [24]
    Danilov FI, Tsurkan AV, Vasileua EA, Protsenko VS. Electrocatalytic activity of composite Fe/TiO2 electrodeposits for hydrogen evolution reaction in alkaline solutions. Int J Hydrog Energy. 2016;41(18):7363.CrossRefGoogle Scholar
  25. [25]
    Shibli SMA, Sebeelamol JN. Development of Fe2O3–TiO mixed oxide incorporated Ni–P coating for electrocatalytic hydrogen evolution reaction. Int J Hydrog Energy. 2013;38(5):2271.CrossRefGoogle Scholar
  26. [26]
    Tacconi NRD, Mrkic M, Rajeshwar K. Photoelectrochemical oxidation of aqueous sulfite on Ni–TiO2 composite film electrodes. Langmuir. 2000;16(22):8426.CrossRefGoogle Scholar
  27. [27]
    Łosiewicz B, Budniok A, Rówiński E, Łagiewka E, Lasia A. The structure, morphology and electrochemical impedance study of the hydrogen evolution reaction on the modified nickel electrodes. Int J Hydrog Energy. 2004;29(2):145.CrossRefGoogle Scholar
  28. [28]
    Simpraga R, Tremiliosi-Filho G, Qian SY, Conway BE. In situ determination of the ‘real area factor’ in H2 evolution electrocatlysis at porous Ni–Fe composite electrodes. J Electroanal Chem. 1997;424(1):141.CrossRefGoogle Scholar
  29. [29]
    Kerner Z, Pajkossy J. On the origin of capacitance dispersion of rough electrodes. Electrochim Acta. 2000;46(2):207.CrossRefGoogle Scholar
  30. [30]
    Armstron RD, Henderson M. Impedance plane display of a reaction with an adsorbed intermediate. J Electroanal Chem. 1972;39(1):81.CrossRefGoogle Scholar
  31. [31]
    Gierlotka D, Rówiński E, Budniok A, Łagiewka E. Production and properties of electrolytic Ni–P–TiO2 composite layers. J Appl Electrochem. 1997;27(12):1349.CrossRefGoogle Scholar
  32. [32]
    Brug GJ, Eeden ALGVD, Sluyters-Rehbach M, Sluyters JH. The analysis of electrode impendances complicated by the presence of a constant phase element. J Electroanal Chem. 1984;176(1):275.CrossRefGoogle Scholar
  33. [33]
    Ezaki H, Morinaga M, Watanabe S, Saito J. Hydrogen overpotential for intermetallic compounds, TiAl, FeAl and NiAl, containing 3d transition metals. Electrochim Acta. 1994;39(11–12):1769.CrossRefGoogle Scholar

Copyright information

© The Nonferrous Metals Society of China and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.GRIPM Advanced Materials Co. Ltd, General Research Institute for Nonferrous MetalsBeijingChina
  2. 2.General Research Institute for Nonferrous MetalsBeijingChina
  3. 3.College of Chemistry and Chemical EngineeringHunan UniversityChangshaChina

Personalised recommendations