Rare Metals

pp 1–12 | Cite as

Microstructural evolution, mechanical properties and degradation mechanism of PS-PVD quasi-columnar thermal barrier coatings exposed to glassy CMAS deposits

  • Zi-Yue Yu
  • Liang-Liang Wei
  • Xing-Ye Guo
  • Bao-Peng Zhang
  • Qing He
  • Hong-Bo GuoEmail author


Thermal barrier coatings (TBCs) applied in aero-engines tend to be attacked by molten calcia-magnesia-alumino-silicate (CMAS) at high operating temperatures. Yttria-stabilized zirconia (YSZ) coatings with quasi-columnar microstructure were fabricated by plasma spray physical vapor deposition (PS-PVD) technique. The chemical changes, microstructural transformation, mechanical properties and degradation mechanisms of the CMAS-interacted TBCs in the thermal cycling tests were investigated. Feathered YSZ grains were dissolved in the CMAS melts, and then the ZrO2 grains were reprecipitated with spherical shape, accompanying with phase transformation from tetragonal (t) to monoclinic (m). The thermal cycling tests reveal that the YSZ coating fails at the early stage due to the attack of CMAS. The fractures in intra-columns lead to partial spallation of the coatings. The failure of the coating occurs at the interfaces between thermally grown oxides (TGO) layer and YSZ topcoat; especially, the hardness and Young’s modulus of the YSZ coatings increase intensively, as the coatings were infiltrated by the CMAS for a long time.


CMAS Thermal barrier coatings Young’s modulus Thermal cycling behavior PS-PVD 



This research was financially supported by the National Natural Science Foundation of China (Nos. 51590894, 51425102 and 51231001).


  1. [1]
    Clarke DR, Oechsner M, Padture NP. Thermal-barrier coatings for more efficient gas-turbine engines. MRS Bull. 2012;37(10):891.CrossRefGoogle Scholar
  2. [2]
    Zhou ZM, Peng H, Zheng L, Guo HB, Gong SK. Thermal cycling performance of La2Ce2O7/YSZ TBCs with Pt/Dy co-doped NiAl bond coat on single crystal superalloy. Rare Met. 2018. Scholar
  3. [3]
    Deng ZQ, Mao J, Liu M, Deng CM, Ma JT. Regional characteristic of 7YSZ coatings prepared by plasma spray-physical vapor deposition technique. Rare Met. 2018. Scholar
  4. [4]
    Refke A, Hawley D, Doesburg J, Schmid RK. LPPS thin film technology for the application of TBC systems. In: International thermal spray conference. Basel; 2005. 438.Google Scholar
  5. [5]
    Gao LH, Guo HB, Wei LL, Li CY, Gong SK, Xu HB. Microstructure and mechanical properties of yttria stabilized zirconia coatings prepared by plasma spray physical vapor deposition. Ceram Int. 2015;41(7):8305.CrossRefGoogle Scholar
  6. [6]
    Gao LH, Guo HB, Wei LL, Li CY, Xu HB. Microstructure, thermal conductivity and thermal cycling behavior of thermal barrier coatings prepared by plasma spray physical vapor deposition. Surf Coat Technol. 2015;276:424.CrossRefGoogle Scholar
  7. [7]
    Padture NP. Advanced structural ceramics in aerospace propulsion. Nat Mater. 2016;15(8):804.CrossRefGoogle Scholar
  8. [8]
    Stott FH, De Wet DJ, Taylor R. Degradation of thermal barrier coatings at very high temperatures. MRS Bull. 1994;19(10):46.CrossRefGoogle Scholar
  9. [9]
    Kramer S, Yang J, Levi CG, Johnson CA. Thermochemical interaction of thermal barrier coatings with molten CaO–MgO–Al2O3–SiO2 (CMAS) deposits. J Am Ceram Soc. 2006;89(10):3167.CrossRefGoogle Scholar
  10. [10]
    Levi CG, Hutchinson JW, Vidal-Setif M-H, Johnson CA. Environmental degradation of thermal-barrier coatings by molten deposits. MRS Bull. 2012;37(10):932.CrossRefGoogle Scholar
  11. [11]
    Aygun A, Vasiliev AL, Padture NP, Ma X. Novel thermal barrier coatings that are resistant to high-temperature attack by glassy deposits. Acta Mater. 2007;55(20):6734.CrossRefGoogle Scholar
  12. [12]
    Vidal-Setif MH, Rio C, Boivin D, Lavigne O. Microstructural characterization of the interaction between 8YPSZ (EB-PVD) thermal barrier coatings and a synthetic CAS. Surf Coat Technol. 2014;239(9):41.CrossRefGoogle Scholar
  13. [13]
    Peng H, Wang LL, Guo L, Miao WH, Guo HB, Gong SK. Degradation of EB-PVD thermal barrier coatings caused by CMAS deposits. Prog Nat Sci Mater Int. 2012;22(5):461.CrossRefGoogle Scholar
  14. [14]
    Wu J, Guo HB, Gao YZ, Gong SK. Microstructure and thermo-physical properties of yttria stabilized zirconia coatings with CMAS deposits. J Eur Ceram Soc. 2011;31(10):1881.CrossRefGoogle Scholar
  15. [15]
    Lipkin DM, Krogstad JA, Gao Y, Johnson CA, Nelson WA, Levi CG. Phase evolution upon aging of air-plasma sprayed t’-zirconia coatings I-synchrotron X-ray diffraction. J Am Ceram Soc. 2013;96(1):290.CrossRefGoogle Scholar
  16. [16]
    Zhang BP, Wei LL, Gao LH, Guo HB, Xu HB. Microstructural characterization of PS-PVD ceramic thermal barrier coatings with quasi-columnar structures. Surf Coat Technol. 2017;311:199.CrossRefGoogle Scholar
  17. [17]
    Wet DJD, Taylor R, Stott FH. Corrosion mechanisms of ZrO2–Y2O3 thermal barrier coatings in the presence of molten middle-east sand. J Phys IV. 1993;03(C9):655.Google Scholar
  18. [18]
    Mohan P, Yuan B, Patterson T, Desai V, Sohn YH. Degradation of yttria stabilized zirconia thermal barrier coatings by molten CMAS (CaO–MgO–Al2O3–SiO2) deposits. Mater Sci Forum. 2008;595–598:207.CrossRefGoogle Scholar
  19. [19]
    Drexler JM, Gledhill AD, Shinoda K, Vasiliev AL, Reddy KM, Sampath S, Padture NP. Jet engine coatings for resisting volcanic ash damage. Adv Mater. 2011;23(21):2419.CrossRefGoogle Scholar
  20. [20]
    Shinozaki M, Clyne TW. The effect of vermiculite on the degradation and spallation of plasma sprayed thermal barrier coatings. Surf Coat Technol. 2013;216(216):172.CrossRefGoogle Scholar
  21. [21]
    Jang BK, Matsubara H. Influence of porosity on hardness and Young’s modulus of nano porous EB-PVD TBCs by nano-indentation. Mater Lett. 2005;59(27):3462.CrossRefGoogle Scholar
  22. [22]
    Guo SQ, Kagawa Y. Effect of thermal exposure on hardness and Young’s modulus of EB-PVD yttria-partially-stabilized zirconia thermal barrier coatings. Ceram Int. 2006;32(3):263.CrossRefGoogle Scholar
  23. [23]
    Nath S, Manna I, Majumdar J. Nano-mechanical behavior of yttria stabilized zirconia (YSZ) based thermal barrier coating. Ceram Int. 2015;41(4):5247.CrossRefGoogle Scholar
  24. [24]
    Zhu HX, Fleck NA, Cocks ACF, Evans AG. Numerical simulation of crack formation from pegs in thermal barrier systems with NiCoCrAlY bond coats. Mater Sci Eng A. 2005;404(1–2):26.CrossRefGoogle Scholar
  25. [25]
    Golosnoy IO, Cipitria A, Clyne TW. Heat transfer through plasma-sprayed thermal barrier coatings in gas turbines: a review of recent work. J Therm Spray Technol. 2009;18(5–6):809.CrossRefGoogle Scholar
  26. [26]
    Chen WR, Wu X, Marple BR, Nagy DR, Patnaik PC. TGO growth behavior in TBCs with APS and HVOF bond coats. Surf Coat Technol. 2008;202(12):2677.CrossRefGoogle Scholar
  27. [27]
    Vidal-Setif MH, Chellah N, Rio C, Sanchez C, Lavigne O. Calcium–magnesium–alumino–silicate (CMAS) degradation of EB-PVD thermal barrier coatings: characterization of CMAS damage on ex-service high pressure blade TBCs. Surf Coat Technol. 2012;208(3):39.CrossRefGoogle Scholar
  28. [28]
    Mercer C, Faulhaber S, Evans AG. Darolia.R. A delamination mechanism for thermal barrier coatings subject to calcium–magnesium–alumino–silicate (CMAS) infiltration. Acta Mater. 2005;53(4):1029–39.CrossRefGoogle Scholar
  29. [29]
    Evans AG, Hutchinson JW. The mechanics of coating delamination in thermal gradients. Surf Coat Technol. 2007;201(18):7905.CrossRefGoogle Scholar
  30. [30]
    Naraparaju R, Hüttermann M, Schulz U, Mechnich P. Tailoring the EB-PVD columnar microstructure to mitigate the infiltration of CMAS in 7YSZ thermal barrier coatings. J Eur Ceram Soc. 2016;37(1):261.CrossRefGoogle Scholar
  31. [31]
    Krause AR, Garces HF, Dwivedi G, Ortiz AL, Sampath S, Padture N. Calcia–magnesia–alumino–silicate (CMAS)-induced degradation and failure of air plasma sprayed yttria-stabilized zirconia thermal barrier coatings. Acta Mater. 2016;105(15):355.CrossRefGoogle Scholar
  32. [32]
    He B, Li Y, Zhang HY, Wu DL, Liang LH, Wei H. Phase transformation of ZrO2 doped with CeO2. Rare Met. 2018;37(1):66.CrossRefGoogle Scholar
  33. [33]
    Garvie RC, Nicholson PS. Structure and thermomechanical properties of partially stabilized zirconia in the CaO-ZrO2 system. J Am Ceram Soc. 1972;55(3):152.CrossRefGoogle Scholar
  34. [34]
    Suresh A, Mayo MJ, Porter WD. Thermodynamics of the tetragonal-to-monoclinic phase transformation in fine and nanocrystalline yttria-stabilized zirconia powders. J Mater Res. 2003;18(12):2912.CrossRefGoogle Scholar
  35. [35]
    Teixeira V, Andritschky M, Fischer W, Buchkremer HP, Stover D. Effects of deposition temperature and thermal cycling on residual stress state in zirconia-based thermal barrier coatings. Surf Coat Technol. 1999;120–121:103.CrossRefGoogle Scholar
  36. [36]
    Huang H, Liu C, Ni LY, Zhou CG. Evaluation of TGO growth in thermal barrier coatings using impedance spectroscopy. Rare Met. 2011;30(1):643.CrossRefGoogle Scholar

Copyright information

© The Nonferrous Metals Society of China and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Materials Science and EngineeringBeihang UniversityBeijingChina
  2. 2.Key Laboratory of High-Temperature Structure Materials and Protective Coatings (Ministry of Industry and Information Technology)Beihang UniversityBeijingChina
  3. 3.Surface Engineering Research InstituteChinese Academy of Agricultural Mechanization SciencesBeijingChina

Personalised recommendations