Rare Metals

, Volume 38, Issue 7, pp 653–664 | Cite as

Mechanical alloying behaviors of Mo–Si–B-based alloy from elemental powders under different milling conditions

  • Tao Yang
  • Xi-Ping GuoEmail author


Elemental powder mixtures with the composition of Mo–12Si–10B–3Zr–0.3Y (at%) were milled in a planetary ball mill using hardened stainless-steel milling media under argon atmosphere. Effects of milling time, milling speed, process control agent, ball-to-powder ratio and milling ball size on the mechanical alloying processes were investigated from the points of morphology, internal structure, grain size, microstrain, phase constituent and dissolution of solute atoms. It is shown that under all conditions, the microstructural evolutions of mechanically milled powder particles are similar. The morphological evolution can roughly be divided into five stages: individual particle, irregular blocky composite particle, flake-shaped particle, agglomerate and single particle. The internal structure generally undergoes five stages: individual particle, coarse lamellar structure, fine lamellar structure, non-uniformly mixed structure and plum-pudding structure. Regardless of exceptional cases, the grain size of Moss decreases and its microstrain increases with the increase in milling time. Si and Zr atoms are dissolved into Mo gradually with the progress of milling. However, the evolutionary rates change significantly with milling conditions. The most significant influencing factor among different milling conditions is the input power from the mill to the powders, which plays a decisive role in the milling process.


Mechanical alloying Milling parameter Milling energy Mo–Si–B 



This work was financially supported by the National Key R&D Program of China (No. 2017YFB0702903), the National Natural Science Foundation of China (Nos. 51431003 and U1435201) and the Research Fund of State Key Laboratory of Solidification Processing, China (No. 143-TZ-2016).


  1. [1]
    Dimiduk DM, Perepezko JH. Mo–Si–B alloys: developing a revolutionary turbine-engine material. MRS Bull. 2003;28(9):639.CrossRefGoogle Scholar
  2. [2]
    Lemberg JA, Ritchie RO. Mo-Si-B alloys for ultrahigh-temperature structural applications. Adv Mater. 2012;24(26):3445.CrossRefGoogle Scholar
  3. [3]
    Burk S, Gorr B, Trindade VB, Christ HJ. Effect of Zr addition on the high-temperature oxidation behaviour of Mo–Si–B alloys. Oxid Met. 2010;73(1–2):163.CrossRefGoogle Scholar
  4. [4]
    Hochmuth C, Schliephake D, Völkl R, Heilmaier M, Glatzel U. Influence of zirconium content on microstructure and creep properties of Mo–9Si–8B alloys. Intermetallics. 2014;48:3.CrossRefGoogle Scholar
  5. [5]
    Krüger M, Schliephake D, Jain P, Kumar KS, Schumacher G, Heilmaier M. Effects of Zr additions on the microstructure and the mechanical behavior of PM Mo–Si–B alloys. J Miner, Met Mater Soc. 2013;65(2):301.CrossRefGoogle Scholar
  6. [6]
    Schneibel JH, Tortorelli PF, Ritchie RO, Kruzic JJ. Optimization of Mo–Si–B intermetallic alloys. Metall Mater Trans A. 2005;36(3):525.CrossRefGoogle Scholar
  7. [7]
    Jehanno P, Boning M, Kestler H, Heilmaier M, Saage H, Krüger M. Molybdenum alloys for high temperature applications in air. Powder Metall. 2008;51(2):99.CrossRefGoogle Scholar
  8. [8]
    Lemberg JA, Middlemas MR, Weingaertner T, Gludovatz B, Cochran JK, Ritchie RO. On the fracture toughness of fine-grained Mo–3Si–1B (wt%) alloys at ambient to elevated (1300 °C) temperatures. Intermetallics. 2012;20(1):141.CrossRefGoogle Scholar
  9. [9]
    Majumdar S, Schliephake D, Gorr B, Christ HJ, Heilmaier M. Effect of yttrium alloying on intermediate to high-temperature oxidation behavior of Mo–Si–B alloys. Metall Mater Trans A. 2013;44(5):2243.CrossRefGoogle Scholar
  10. [10]
    Majumdar S, Gorr B, Christ HJ, Schliephake D, Heilmaier M. Oxidation mechanisms of lanthanum-alloyed Mo–Si–B. Corros Sci. 2014;88:360.CrossRefGoogle Scholar
  11. [11]
    Majumdar S, Burk S, Schliephake D, Krüger M, Christ HJ, Heilmaier M. A study on effect of reactive and rare earth element additions on the oxidation behavior of Mo–Si–B system. Oxid Met. 2013;80(3–4):219.CrossRefGoogle Scholar
  12. [12]
    Burk S, Gorr B, Krüger M, Heilmaier M, Christ HJ. Oxidation behavior of Mo–Si–B–(X) alloys: macro- and microalloying (X = Cr, Zr, La2O3). J Miner, Met Mater Soc. 2011;63(12):32.CrossRefGoogle Scholar
  13. [13]
    Sossaman T, Perepezko JH. Viscosity control of borosilica by Fe doping in Mo–Si–B environmentally resistant alloys. Corros Sci. 2015;98:406.CrossRefGoogle Scholar
  14. [14]
    Jéhanno P, Heilmaier M, Saage H, Heyse H, Böning M, Kestler H, Schneibel JH. Superplasticity of a multiphase refractory Mo–Si–B alloy. Scripta Mater. 2006;55(6):525.CrossRefGoogle Scholar
  15. [15]
    Yu JL, Li ZK, Zheng X, Zhang JJ, Liu H, Bai R, Wang H. Tensile properties of multiphase Mo–Si–B refractory alloys at elevated temperatures. Mater Sci Eng, A. 2012;532:392.CrossRefGoogle Scholar
  16. [16]
    Rioult FA, Imhoff SD, Sakidja R, Perepezko JH. Transient oxidation of Mo–Si–B alloys: effect of the microstructure size scale. Acta Mater. 2009;57(15):4600.CrossRefGoogle Scholar
  17. [17]
    Wang F, Shan AD, Dong XP, Wu JS. Microstructure and oxidation behavior of directionally solidified Mo–Mo5SiB2 (T2)-Mo3Si alloys. J Alloy Compd. 2008;462(1–2):436.CrossRefGoogle Scholar
  18. [18]
    Krüger M, Franz S, Saage H, Heilmaier M, Schneibel JH, Jéhanno P, Böning M, Kestler H. Mechanically alloyed Mo–Si–B alloys with a continuous α-Mo matrix and improved mechanical properties. Intermetallics. 2008;16(7):933.CrossRefGoogle Scholar
  19. [19]
    Majumdar S, Kumar A, Schliephake D, Christ HJ, Jiang X, Heilmaier M. Microstructural and micro-mechanical properties of Mo–Si–B alloyed with Y and La. Mater Sci Eng, A. 2013;573:257.CrossRefGoogle Scholar
  20. [20]
    Gheisari K, Javadpour S, Oh JT, Ghaffari M. The effect of milling speed on the structural properties of mechanically alloyed Fe-45%Ni powders. J Alloy Compd. 2009;472(1–2):416.CrossRefGoogle Scholar
  21. [21]
    Ragab M, Salem HG. Effect of milling energy on the structural evolution and stability of nanostructured Al-5.7wt% Ni mechanically alloyed eutectic alloy. Powder Technol. 2012;222:108.CrossRefGoogle Scholar
  22. [22]
    Zhang LJ, Guo XP. Mechanical alloying behavior of Nb–Ti–Si-based alloy made from elemental powders by ball milling process. Rare Met. 2017;36(3):174.CrossRefGoogle Scholar
  23. [23]
    Shao HP, Wang Z, Lin T, Ye Q, Guo ZM. Preparation of TiAl alloy powder by high-energy ball milling and diffusion reaction at low temperature. Rare Met. 2018;37(1):21.CrossRefGoogle Scholar
  24. [24]
    Zhang JG, Bai Y, Dong H, Wu Q, Ye XC. Influence of ball size distribution on grinding effect in horizontal planetary ball mill. Adv Powder Technol. 2014;25(3):983.CrossRefGoogle Scholar
  25. [25]
    Shaw L, Villegas J, Luo H, Zawrah M, Miracle D. Effects of process-control agents on mechanical alloying of nanostructured aluminum alloys. Metall Mater Trans A. 2003;34(1):159.CrossRefGoogle Scholar
  26. [26]
    Ali M, Liwa M. Modification of parameters in mechanochemical synthesis to obtain alpha and beta-molybdenum disilicide. Adv Powder Technol. 2013;24(1):183.CrossRefGoogle Scholar
  27. [27]
    Liu L, Padella F, Guo W, Magini M. Solid state reactions induced by mechanical alloying in metal-silicon (metal = Mo, Nb) systems. Acta Metall Mater. 1995;43(10):3755.CrossRefGoogle Scholar
  28. [28]
    Abbasi AR, Shamanian M. Synthesis of Mo5SiB2 based nanocomposites by mechanical alloying and subsequent heat treatment. Mater Sci Eng, A. 2011;528(9):3295.CrossRefGoogle Scholar
  29. [29]
    Yamauchi A, Yoshimi K, Kurokawa K, Hanada S. Synthesis of Mo–Si–B in situ composites by mechanical alloying. J Alloy Compd. 2007;434–435:420.CrossRefGoogle Scholar
  30. [30]
    Bakhshi SR, Salehi M, Edris H, Borhani GH. Structural evaluation of Mo–Si–B multiphase alloy during mechanical alloying and heat treatment. Powder Metall. 2008;51(2):119.CrossRefGoogle Scholar
  31. [31]
    Yang T, Guo XP, Luo YC. Microstructural evolution of mechanically alloyed Mo–Si–B–Zr–Y powders. Int J Refract Metal Hard Mater. 2016;56:35.CrossRefGoogle Scholar
  32. [32]
    Williamson GK, Hall WH. X-Ray line broadening from filed aluminium and wolfram. Acta Metall. 1953;1(1):22.CrossRefGoogle Scholar
  33. [33]
    Abdellaoui M, Gaffet E. The physics of mechanical alloying in a planetary ball mill: mathematical treatment. Acta Metall Mater. 1995;43(3):1087.CrossRefGoogle Scholar
  34. [34]
    Magini M, Iasonna A. Energy transfer in mechanical alloying (overview). Mater Trans. 1995;36(2):123.CrossRefGoogle Scholar
  35. [35]
    Maurice DR, Courtney TH. The physics of mechanical alloying: a first report. Metall Trans A. 1990;21A:289.CrossRefGoogle Scholar
  36. [36]
    Gheiratmand T, Madaah Hosseini HR, Davami P, Ababei G, Song M. Mechanism of mechanically induced nanocrystallization of amorphous FINEMET ribbons during milling. Metall Mater Trans A. 2015;46(6):2718.CrossRefGoogle Scholar
  37. [37]
    Burgio N, Iasonna A, Magini M, Martelli S, Padella F. Mechanical alloying of the Fe–Zr system. Correlation between input energy and end products. IL Nuovo Cimento. 1991; 13 D (4): 459.Google Scholar

Copyright information

© The Nonferrous Metals Society of China and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.State Key Laboratory of Solidification ProcessingNorthwestern Polytechnical UniversityXi’anChina

Personalised recommendations