Advertisement

Rare Metals

, Volume 38, Issue 10, pp 899–904 | Cite as

Fabrication and characterization of superconducting RSFQ circuits

  • Gang Li
  • Hao Li
  • Jian-She Liu
  • Wei ChenEmail author
Article

Abstract

To meet the specification of the qubits in our laboratory, a 0.4 kA·cm−2 superconducting rapid single flux quantum (RSFQ) circuit was designed and successfully fabricated with an improved Nb-based self-aligned lift-off process. This circuit consists of a single-flux-quantum (SFQ) pulse generator, a Josephson transmission line (JTL) and a T-flip flop (TFF), and it acts as a frequency divider. The values of the inductors in this circuit were extracted using InductEX and the basic function of this circuit was confirmed using the simulation software WRspice before fabrication. After fabrication, the basic parameters of this circuit were measured at ~ 2.5 K in a Janis He-3 cryostat. This work laid the theoretical and experimental basis for the future research on the RSFQ-qubit control circuits.

Keywords

Rapid single flux quantum Frequency divider WRspice InductEX 

Notes

Acknowledgements

This study was financially supported by the Natural Science Foundation of China (No. 60836001), the State Key Program for Basic Research of China (No. 2011CBA00304) and the Tsinghua University Initiative Scientific Research Program (No. 20131089314). Gang Li and Hao Li would like to thank Zhejiang Tianjingsheng Foundation, China, for student assistantships.

References

  1. [1]
    Ristè D, Bultink C, Lehnert K, DiCarlo L. Feedback control of a solid-state qubit using high-fidelity projective measurement. Phys Rev Lett. 2012;109(24):240502.CrossRefGoogle Scholar
  2. [2]
    Devoret M, Schoelkopf R. Superconducting circuits for quantum information: an outlook. Science. 2013;339(6124):1169.CrossRefGoogle Scholar
  3. [3]
    Reed M, DiCarlo L, Nigg S, Sun L, Frunzio L, Girvin S, Schoelkopf R. Realization of three-qubit quantum error correction with superconducting circuits. Nature. 2012;482(7385):382.CrossRefGoogle Scholar
  4. [4]
    Neeley M, Bialczak RC, Lenander M, Lucero E, Mariantoni M, O’Connell A, Sank D, Wang H, Weides M, Wenner J. Generation of three-qubit entangled states using superconducting phase qubits. Nature. 2010;467(7315):570.CrossRefGoogle Scholar
  5. [5]
    DiCarlo L, Reed M, Sun L, Johnson B, Chow J, Gambetta J, Frunzio L, Girvin S, Devoret M, Schoelkopf R. Preparation and measurement of three-qubit entanglement in a superconducting circuit. Nature. 2010;467(7315):574.CrossRefGoogle Scholar
  6. [6]
    Likharev KK. Ultrafast superconductor digital electronics: RSFQ technology roadmap. Czech J Phys. 1996;46(6):3331.CrossRefGoogle Scholar
  7. [7]
    Semenov VK, Averin DV. SFQ control circuits for Josephson junction qubits. IEEE Trans Appl Supercond. 2003;13(2):960.CrossRefGoogle Scholar
  8. [8]
    Ohki TA, Wulf M, Ocko MF. Picosecond on-chip qubit control circuitry. IEEE Trans Appl Supercond. 2005;15(2):837.CrossRefGoogle Scholar
  9. [9]
    Castellano MG, Chiarello F, Leoni R, Torrioli G, Carelli P, Cosmelli C, Khabipov M, Zorin AB, Balashov D. Rapid single-flux quantum control of the energy potential in a double SQUID qubit circuit. Supercond Sci Technol. 2007;20(6):500.CrossRefGoogle Scholar
  10. [10]
    Yamanashi Y, Asano T, Yoshikawa N. On-chip microwave generator for manipulation of superconductive quantum bits. Physica C-Supercond Appl. 2006;445(1):967.CrossRefGoogle Scholar
  11. [11]
    Matsuda G, Yamanashi Y, Yoshikawa N. Design of an SFQ microwave chopper for controlling quantum bits. IEEE Trans Appl Supercond. 2007;17(2):146.CrossRefGoogle Scholar
  12. [12]
    Miura S, Takeuchi N, Yamanashi Y, Yoshikawa N. Implementation of SFQ microwave choppers for controlling quantum bits. Phys. Procedia. 2012;36:250.CrossRefGoogle Scholar
  13. [13]
    Averin DV, Rabenstein K, Semenov VK. Rapid ballistic readout for flux qubits. Phys Rev B. 2006;73(9):12.CrossRefGoogle Scholar
  14. [14]
    Fedorov A, Shnirman A, Schon G. Reading out the state of a flux qubit by Josephson transmission line solitons. Phys Rev B. 2007;75(22):2288.CrossRefGoogle Scholar
  15. [15]
    Herr A, Fedorov A, Shnirman A, Il’ichev E, Schon G. Design of a ballistic fluxon qubit readout. Supercond Sci Technol. 2007;20(11):450.CrossRefGoogle Scholar
  16. [16]
    Fedorov KG, Shcherbakova AV, Wolf MJ, Beckmann D, Ustinov AV. Fluxon readout of a superconducting qubit. Phys Rev Lett. 2014;112(16):160502.CrossRefGoogle Scholar
  17. [17]
    Wulf M, Zhou XX, Habif JL, Rott P, Bocko MF, Feldman MJ. An unshunted comparator as a device for quantum measurements. IEEE Trans Appl Supercond. 2003;13(2):974.CrossRefGoogle Scholar
  18. [18]
    Ohki TA, Wulf M, Feldman MJ, Bocko MF. Unshunted QOS comparator for qubit readout. J Phys Conf Ser. 2006;43(1):1413.CrossRefGoogle Scholar
  19. [19]
    Savin AM, Pekola JP, Holmqvist T, Hassel J, Gronberg L, Helisto P, Kidiyarova-Shevchenko A. High-resolution superconducting single-flux quantum comparator for sub-Kelvin temperatures. Appl Phys Lett. 2006;89(13):3.CrossRefGoogle Scholar
  20. [20]
    Ohki TA, Savin A, Hassel J, Groenberg L, Karminskaya T, Kidiyarova-Shevchenko A. Balanced comparator for RSFQ qubit readout. IEEE Trans Appl Supercond. 2007;17(2):128.CrossRefGoogle Scholar
  21. [21]
    Walls TJ, Averin DV, Likharev KK. Josephson junction comparator as a quantum-limited detector for flux qubit readout. IEEE Trans Appl Supercond. 2007;17(2):136.CrossRefGoogle Scholar
  22. [22]
    Chen W, Rylyakov AV, Patel V, Lukens JE. Rapid single flux quantum T-flip flop operating up to 770 GHz. IEEE Trans Appl Supercond. 1999;9(2):3212.CrossRefGoogle Scholar
  23. [23]
    Dorojevets M, Ayala CL, Kasperek AK. Data-flow microarchitecture for wide datapath RSFQ processors: design study. IEEE Trans Appl Supercond. 2011;21(3):787.CrossRefGoogle Scholar
  24. [24]
    Bunyk P, Leung M, Spargo J, Dorojevets M. FLUX-1 RSFQ microprocessor: physical design and test results. IEEE Trans Appl Supercond. 2003;13(2):433.CrossRefGoogle Scholar
  25. [25]
    Nakajima N, Matsuzaki F, Yamanashi Y, Yoshikawa N, Tanaka M, Kondo T, Fujimaki A, Terai H, Yorozu S. Design and implementation of circuit components of the SFQ microprocessor, CORE1. Supercond Sci Technol. 2004;17(3):301.CrossRefGoogle Scholar
  26. [26]
    Fujimaki A, Tanaka M, Yamada T, Yamanashi Y, Park H, Yoshikawa N. Bit-serial single flux quantum microprocessor CORE. IEICE Trans Electron. 2008;E91C(3):342.CrossRefGoogle Scholar
  27. [27]
    Li H, Li G, Liu JS, Li TF, Chen W. Parametric characterization and macroscopic quantum tunneling of Nb/AlOx/Nb Josephson junctions. IEEE Trans Appl Supercond. 2014;24(5):1.CrossRefGoogle Scholar
  28. [28]
    Li G, Li H, Liu QC, Zhao H, Zhang YS, Liu JS, Li TF, Chen W. Characterization of a superconducting flux qubit. Cryog Supercond. 2014;42(10):1.Google Scholar
  29. [29]
    Li H, Liu JS, Zhang YS, Cai H, Li G, Liu QC, Han SY, Chen W. Principle and experimental investigation of current-driven negative-inductance superconducting quantum interference device. Supercond Sci Technol. 2017;30(3):035012.CrossRefGoogle Scholar
  30. [30]
    Fourie CJ, Wetzstein O, Ortlepp T, Kunert J. Three-dimensional multi-terminal superconductive integrated circuit inductance extraction. Supercond Sci Technol. 2011;24(12):12.CrossRefGoogle Scholar

Copyright information

© The Nonferrous Metals Society of China and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Tsinghua National Laboratory for Information Science and Technology, Institute of Microelectronics, Department of Microelectronics and NanoelectronicsTsinghua UniversityBeijingChina

Personalised recommendations