Rare Metals

, Volume 38, Issue 3, pp 259–269 | Cite as

Kenaf cellulose-based poly(amidoxime) ligand for adsorption of rare earth ions

  • Md Lutfor RahmanEmail author
  • Mohd Sani Sarjadi
  • Sazmal Effendi Arshad
  • Mashitah M. Yusoff
  • Shaheen M. Sarkar
  • Baba Musta


A well-known adsorbent, poly(amidoxime) ligand, was prepared from polyacrylonitrile (PAN) grafted kenaf cellulose, and subsequent characterization was performed by Fourier transform infrared spectroscopy (FTIR), field emission scanning electron microscope (FESEM) and inductively coupled plasma mass spectrometry (ICP-MS). The adsorption capacities of the prepared ligand for rare earth metals are found to be excellent, with adsorptions of La3+, Ce3+, Pr3+, Gd3+ and Nd3+ experimentally determined to be 262, 255, 244, 241 and 233 mg·g−1, respectively, at pH 6. The experimental values of the adsorption of rare earth metals are well matched with the pseudo-second-order rate equation. The reusability of the adsorbent is examined for seven cycles of sorption/desorption, demonstrating that the proposed adsorbent could be reused for over seven cycles without any significant loss in the original removal capability of the ligand.


Adsorption Poly(amidoxime) Rare earths Separation Kenaf cellulose 



This study was financially supported by the Universiti Malaysia Sabah (No. SBK0260-ST-2016).


  1. [1]
    Andrew F, Derya K. Determination of rare earth elements in natural water samples a review of sample separation, preconcentration and direct methodologies. Anal Chim Acta. 2016;935:1.Google Scholar
  2. [2]
    Sereshti H, Far AR, Samadi S. Optimized ultrasound-assisted emulsification microextraction followed by ICP-OES for simultaneous determination of lanthanum and cerium in urine and water samples. Anal Lett. 2012;45(11):1426.Google Scholar
  3. [3]
    Guo XQ, Tang XT, He M, Chen BB, Nan K, Zhang QY, He B. Dual dispersive extraction combined with electrothermal vaporization inductively coupled plasma mass spectrometry for determination of trace REEs in water and sediment samples. RSC Adv. 2014;4(38):19960.Google Scholar
  4. [4]
    Takeshi O, Hirokazu N, Mikiya T. Adsorption mechanism of rare earth elements by adsorbents with diglycolamic acid ligands. Hydrometallurgy. 2016;163:156.Google Scholar
  5. [5]
    Emsbo P, McLaughlin PI, Breit GN, du Bray EA, Koenig AE. Rare earth elements in sedimentary phosphate deposits: solution to the global REE crisis. Gondwana Res. 2015;27(2):776.Google Scholar
  6. [6]
    Gao B, Gao X, Lei Q. Studies on preparation of composite chelating material poly(amidoxime)/SiO2 with grafting-type. J Macromol Sci Part A Pure Appl Chem. 2011;48(2):119.Google Scholar
  7. [7]
    Gao B, Li Y, An F. Preparation of iminoacetic acid-type composite chelating material IAA-PEI/SiO2 and preliminary studies on chelating adsorption property towards heavy metal ions. J Macromol Sci Part A Pure Appl Chem. 2011;48(10):823.Google Scholar
  8. [8]
    Ogata T, Narita H, Tanaka M. Adsorption behavior of rare earth elements on silica gel modified with diglycol amic acid. Hydrometallurgy. 2015;152:178.Google Scholar
  9. [9]
    Mashitah MY, NikRohani NM, Sarkar MS, Tapan KB, Lutfor MR, Sazmal EA, Sarjadi MS, Ajaykumar DK. Synthesis of ion imprinted polymers for selective recognition and separation of rare earth metals. J Rare Earth. 2017;35(2):177.Google Scholar
  10. [10]
    Nik Rohani NM, Malek NFA, Yusoff MM, Lutfor MR. Ion imprinted polymers for selective recognition and separation of lanthanum and cerium ions from other lanthanide. Sep Sci Technol. 2016;51(17):2762.Google Scholar
  11. [11]
    Dupont D, Brullot W, Bloemen M, Verbiest T, Binnemans K. Selective uptake of rare earths from aqueous solutions by EDTA-functionalized magnetic and nonmagnetic nanoparticles. ACS Appl Mater Interfaces. 2014;6(7):4980.Google Scholar
  12. [12]
    Wang F, Zhao J, Zhou H, Li W, Sui N, Liu H. O-carboxymethyl chitosan entrapped by silica: preparation and adsorption behaviour toward neodymium (III) ions. J Chem Technol Biotechnol. 2013;88(2):317.Google Scholar
  13. [13]
    Wu D, Sun Y, Wang Q. Adsorption of lanthanum (III) from aqueous solution using 2-ethylhexyl phosphonic acid mono-2-ethylhexyl ester-grafted magnetic silica nanocomposites. J Hazard Mater. 2013;260:409.Google Scholar
  14. [14]
    Ogata T, Narita H, Tanaka M. Immobilization of diglycol amic acid on silica gel for selective recovery of rare earth elements. Chem Lett. 2014;43(9):1414.Google Scholar
  15. [15]
    Ogata T, Narita H, Tanaka M. Rapid and selective recovery of heavy rare earths by using an adsorbent with diglycol amic acid group. Hydrometallurgy. 2015;155:105.Google Scholar
  16. [16]
    Ogata T, Narita H, Tanaka M, Hoshino M, Kon Y, Watanabe Y. Selective recovery of heavy rare earth elements from apatite with an adsorbent bearing immobilized tridentate amido ligands. Sep Purif Technol. 2016;159:157.Google Scholar
  17. [17]
    Narita H, Tanaka M. Separation of rare earth elements from base metals in concentrated HNO3, H2SO4 and HCl solutions with diglycolamide. Solvent Extr Res Dev, Jpn. 2013;20:115.Google Scholar
  18. [18]
    Naganawa H, Shimojo K, Mitamura H, Sugo Y, Noro J, Goto M. A new green extractant of the diglycol amic acid type for lanthanides. Solvent Extr Res Dev, Jpn. 2007;14:151.Google Scholar
  19. [19]
    Sun X, Luo H, Shannon MM, Liu R, Hou X, Dai S. Adsorption of rare earth ions using carbonized polydopamine nanocarbon shells. J Rare Earth. 2016;34(1):77.Google Scholar
  20. [20]
    Sun XQ, Bell JR, Luo HM, Dai S. Extraction separation of rare-earth ions via competitive ligand complexations between aqueous and ionic-liquid phases. Dalton Trans. 2011;40:8019.Google Scholar
  21. [21]
    Parhi PK, Park KH, Nam CW, Park JT. Liquid-liquid extraction and separation of total rare earth (RE) metals from polymetallic manganese nodule leaching solution. J Rare Earth. 2015;33(2):207.Google Scholar
  22. [22]
    Fernandez RG, Alonso IG. Separation of rare earth elements by anion-exchange chromatography using ethylenediaminetetraacetic acid as mobile phase. J Chromatogr A. 2008;1180(1–2):59.Google Scholar
  23. [23]
    Sun XQ, Peng B, JiY Chen J, Li DQ. The solid-liquid extraction of yttrium from rare earths by solvent (ionic liquid) impreganated resin coupled with complexing method. Sep Purif Technol. 2008;63(1):61.Google Scholar
  24. [24]
    Bhattacharyya A, Mohapatra PK, Ansari SA, Raut DR, Manchanda VK. Separation of trivalent actinides from lanthanides using hollow fiber supported liquid membrane containing Cyanex-301 as the carrier. J Membr Sci. 2008;312(1–2):1.Google Scholar
  25. [25]
    Wang L, Huang X, Yu Y, Zhao L, Wang C, Feng Z, Cui D, Long Z. Towards cleaner production of rare earth elements from bastnaesite in China. J Clean Prod. 2017;165:231.Google Scholar
  26. [26]
    Lutfor MR, Silong S, Wan Yunus WMZ, Rahman MZA, Ahmad M, Haron J. Preparation and characterization of poly(amidoxime) chelating resin from polyacrylonitrile-graft-sago starch. Euro Polym J. 2000;36(10):2105.Google Scholar
  27. [27]
    Yong WSS, Lutfor MR, Arshad SE, Surugau NL, Musta B. Synthesis and characterization of poly(hydroxamic acid)-poly(amidoxime) chelating ligands from polymer-grafted acacia cellulose. J Appl Polym Sci. 2012;124(6):4443.Google Scholar
  28. [28]
    Lutfor MR, Mandal H, Sarkar SM, Yusoff MM, Sazmal EA, Baba M. Synthesis of poly(hydroxamic acid) ligand from polymer grafted corn-cob cellulose for transition metals extraction. Polym Adv Technol. 2016;27(12):1625.Google Scholar
  29. [29]
    Lutfor MR, Mandal HB, Sarkar SM, Kabir MN, Farid EM, Arshad SE. Synthesis of tapioca cellulose-based poly(hydroxamic acid) ligand for heavy metals removal from water. J Macromol Sci Part A. 2016;53(8):515.Google Scholar
  30. [30]
    Lutfor MR, Sarkar SM, Yusoff MM. Efficient removal of transition metal ions using poly(amidoxime) ligand from polymer grafted kenaf cellulose. RSC Adv. 2016;6:745.Google Scholar
  31. [31]
    Lutfor MR, Nik Rohani NM, Yusoff MM. Synthesis of poly(amidoxime) chelating ligand from polymer grafted corn-cob cellulose for metal extraction. J Appl Polym Sci. 2014;131(19):40833.Google Scholar
  32. [32]
    Lutfor MR, Sarkar SM, Yusoff MM, Kulkarni AKD, Chowdhury ZZ, Ali ME. Poly(amidoxime) from polymer-grafted khaya cellulose: an excellent medium for the removal of transition metal cations from aqueous solution. Bio Resour. 2016;11(3):6780.Google Scholar
  33. [33]
    Lutfor MR, Sarkar SM, Yusoff MM, Abdullah MH. Optical detection and efficient removal of transition metal ions from water using poly (hydroxamic acid) ligand. Sen Actuat B: Chem. 2017;242:595.Google Scholar
  34. [34]
    Awual MR, Ismail MMR, Yaita T, Khaleque MA, Ferdows M. pH dependent Cu (II) and Pd (II) ions detection and removal from aqueous media by an efficient mesoporous adsorbent. Chem Eng J. 2014;236:100.Google Scholar
  35. [35]
    Chuan FL, Jun LR, Feng X, Jina JL, Jin XS, Run CS. Run, Isolation and characterization of cellulose obtained from ultrasonic irradiated sugarcane bagasse. J Agric Food Chem. 2006;54(16):5742.Google Scholar
  36. [36]
    Agrawal YK. Hydroxamic acids and their metal complexes. Russ Chem Rev. 1979;48(10):948.Google Scholar
  37. [37]
    Hall D, Llewellyn FJ. The crystal structure of form-amidoxime. Acta Cryst. 1956;9:108.Google Scholar
  38. [38]
    O’Connell DW, Birkinshaw C, O’Dwyer TF. A modified cellulose adsorbent for the removal of Ni(II) from aqueous solutions. J Chem Tech Biotechnol. 2006;81(11):1820.Google Scholar
  39. [39]
    Lutfor MR, Mandal HB, Sarkar SM, Wahab NAA, Yusoff MM, Sazmal EA. Synthesis of poly(hydroxamic acid) ligand from polymer grafted khaya cellulose for transition metals extraction. Fiber Polym. 2016;17(4):521.Google Scholar
  40. [40]
    Wanga P, Du M, Zhu H, Bao S, Yang T, Zou M. Structure regulation of silica nanotubes and their adsorption behaviors for heavy metal ions: pH effect, kinetics, isotherms and mechanism. J Hazar Mater. 2015;286:533.Google Scholar
  41. [41]
    Norouzian RS, Lakouraj MM. Preparation and heavy metal ion adsorption behavior of novel supermagnetic nanocomposite based on thiacalix[4]arene and polyaniline: conductivity, isotherm and kinetic study. Synth Metals. 2015;203:135.Google Scholar
  42. [42]
    Waqar F, Jan S, Mohammad B, Hakim M, Alam S, Yawar W. Preconcentration of rare earth elements in seawater with chelating resin having fluorinated beta-diketone immobilized on styrene divinyl benzene for their determination by ICP-OES. J Chin Chem Soc. 2009;56(2):335.Google Scholar
  43. [43]
    Zhu Y, Umemura T, Haraguchi H, Inagaki K, Chiba K. Determination of REEs in seawater by ICP-MS after on-line preconcentration using a syringedriven chelating column. Talanta. 2009;78(3):891.Google Scholar
  44. [44]
    Fu Q, Yang L, Wang Q. On-line preconcentration with a novel alkyl phosphinic acid extraction resin coupled with inductively coupled plasma mass spectrometry for determination of trace rare earth elements in seawater. Talanta. 2007;72(4):1248.Google Scholar
  45. [45]
    Kumar SA, Pandey SP, Shenoy NS, Kumar SD. Matrix separation and preconcentration of rare earth elements from seawater by poly hydroxamic acid cartridge followed by determination using ICP-MS. Desalination. 2011;281:49.Google Scholar
  46. [46]
    Zhang TH, Shan XQ, Liu RX, Tang HX, Zhang SZ. Preconcentration of rare earth elements in seawater with poly(acrylaminophosphonic dithiocarbamate) chelating fiber prior to determination by inductively coupled plasma mass spectrometry. Anal Chem. 1998;70(18):3964.Google Scholar
  47. [47]
    Wang ZH, Yan XP, Wang ZP, Zhang ZP, Liu L. Flow injection on-line solid phase extraction coupled with inductively coupled plasma mass spectrometry for determination of (ultra)trace rare earth elements in environmental materials using maleic acid grafted polytetrafluoroethylene fibers as sorbent. J Am Soc Mass Spectrom. 2006;17(9):1258.Google Scholar
  48. [48]
    Jarvis KE, Williams JG, Alcantara E, Wills JD. Determination of trace and ultra-trace elements in saline waters by inductively coupled plasma mass spectrometry after off-line chromatographic separation and preconcentration. J Anal At Spectrom. 1996;11:917.Google Scholar
  49. [49]
    Zhua YF, Wang WB, Zheng Y, Wang F, Wang AQ. Rapid enrichment of rare-earth metals by carboxymethylcellulose-based open-cellular hydrogel adsorbent from HIPEs template. Carbohy Polym. 2016;140:51.Google Scholar
  50. [50]
    Feiping Z, Eveliina R, Yong M, Xueting W, Dulin Y, Mika S. An EDTA-cyclodextrin material for the adsorption of rare earth elements and its application in preconcentration of rare earth elements in seawater. J Coll Inter Sci. 2016;465:215.Google Scholar

Copyright information

© The Nonferrous Metals Society of China and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Faculty of Science and Natural ResourcesUniversiti Malaysia SabahKota KinabaluMalaysia
  2. 2.Faculty of Industrial Sciences and TechnologyUniversity Malaysia PahangGambangMalaysia

Personalised recommendations