Skip to main content
Log in

Research progress in electron transport layer in perovskite solar cells

  • Published:
Rare Metals Aims and scope Submit manuscript

A Correction to this article was published on 24 February 2020

This article has been updated

Abstract

Since perovskite solar cells appeared in 2009, its simple preparation process, high photoelectric conversion efficiency and the characteristic of low cost in preparation process let it become the hot spot of both at-home and abroad. Owing to the constant efforts of scientists, the conversion efficiency of perovskite solar cells is more than 20% now. Perovskite solar cells are mainly composed of conductive glass, electron transport layer and hole transport layer, perovskite layer and electrode parts. This paper will briefly introduce the working principle and working process about the electron transport layer of perovskite solar cells. The paper focuses on aspects such as material types (e.g., inorganic electron transport materials, organic small molecule electron transport materials, surface modified electron transport materials and doped electron transport materials), preparation technology of electron transport layer, the effects of electron transport layer on the photovoltaic performance of the devices, and the electron transport layer in the future research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Change history

  • 24 February 2020

    In the original publication, the affiliation of Min-Hao Li was published incorrectly as below.

References

  1. Calió L, Momblona C, Gil-Escrig L, Kazim S, Sessolo M, Sastre-Santos Á, Bolink HJ, Ahmad S. Vacuum deposited perovskite solar cells employing dopant-free triazatruxene as the hole transport material. Sol Energy Mater Sol Cells. 2017;163:237.

    Article  Google Scholar 

  2. Yang L, Yan Y, Cai F, Li J, Wang T. Poly(9-vinylcarbazole) as a hole transport material for efficient and stable inverted planar heterojunction perovskite solar cells. Sol Energy Mater Sol Cells. 2017;163:210.

    Article  Google Scholar 

  3. Liu P, Xu B, Hua Y, Cheng M, Aitola K, Sveinbjörnsson K, Zhang J, Boschloo G, Sun L, Kloo L. Design, synthesis and application of a π-conjugated, non-spiro molecular alternative as hole-transport material for highly efficient dye-sensitized solar cells and perovskite solar cells. J Power Sources. 2017;344:11.

    Article  Google Scholar 

  4. Sheikh AD, Bera A, Haque MA, Rakhi RB, Gobbo SD, Alshareef HN, Wu T. Atmospheric effects on the photovoltaic performance of hybrid perovskite solar cells. Sol Energy Mater Sol Cells. 2015;137:6.

    Article  Google Scholar 

  5. Qin T, Huang W, Kim JE, Vak D, Forsyth C, McNeill CR, Cheng YB. Amorphous hole-transporting layer in slot-die coated perovskite solar cells. Nano Energy. 2017;31:210.

    Article  Google Scholar 

  6. Hu Z, Miao J, Liu M, Yang T, Liang Y, Goto O, Meng H. Enhanced performance of inverted perovskite solar cells using solution-processed carboxylic potassium salt as cathode buffer layer. Org Electron. 2017;45:97.

    Article  Google Scholar 

  7. Huang L, Li C, Sun X, Xu R, Du Y, Ni J, Cai H, Li J, Hu Z, Zhang J. Efficient and hysteresis-less pseudo-planar heterojunction perovskite solar cells fabricated by a facile and solution-saving one-step dip-coating method. Org Electron. 2017;40:13.

    Article  Google Scholar 

  8. Prathapani S, More V, Bohm S, Bhargava P, Yella A, Mallick S. TiO2 colloid-based compact layers for hybrid lead halide perovskite solar cells. Applied Materials Today. 2017;7:112.

    Article  Google Scholar 

  9. Wang L, Li GR, Zhao Q, Gao XP. Non-precious transition metals as counter electrode of perovskite solar cells. Energy Storage Mater. 2017;7:40.

    Article  Google Scholar 

  10. Dang TV, Pammi SVN, Choi J, Yoon SG. Utilization of AZO/Au/AZO multilayer electrodes instead of FTO for perovskite solar cells. Sol Energy Mater Sol Cells. 2017;163:58.

    Article  Google Scholar 

  11. Zhou Y, Huang F, Cheng YB, Gray-Weale A. Numerical analysis of a hysteresis model in perovskite solar cells. Comput Mater Sci. 2017;126:22.

    Article  Google Scholar 

  12. Kim S, Chung T, Bae S, Lee SW, Lee KD, Kim H, Lee S, Kang Y, Lee HS, Kim D. Improved performance and thermal stability of perovskite solar cells prepared via a modified sequential deposition process. Org Electron. 2017;41:266.

    Article  Google Scholar 

  13. Song J, Li SP, Zhao YL, Yuan J, Zhu Y, Fang Y, Zhu L, Gu XQ, Qiang YH. Performance enhancement of perovskite solar cells by doping TiO2 blocking layer with group VB elements. J Alloy Compd. 2017;694:1232.

    Article  Google Scholar 

  14. Li W, Jiang Q, Yang J, Luo Y, Li X, Hou Y, Zhou S. Improvement of photovoltaic performance of perovskite solar cells with a ZnO/Zn2SnO4 composite compact layer. Sol Energy Mater Sol Cells. 2017;159:143.

    Article  Google Scholar 

  15. Ye T, Xing J, Petrović M, Chen S, Chellappan V, Subramanian GS, Sum TC, Liu B, Xiong Q, Ramakrishna S. Temperature effect of the compact TiO2 layer in planar perovskite solar cells: an interfacial electrical, optical and carrier mobility study. Sol Energy Mater Sol Cells. 2017;163:242.

    Article  Google Scholar 

  16. Song J, Yang Y, Zhao YL, Che M, Zhu L, Gu XQ, Qiang YH. Morphology modification of perovskite film by a simple post-treatment process in perovskite solar cell. Mater Sci Eng B. 2017;217:18.

    Article  Google Scholar 

  17. Apostolopoulou A, Sygkridou D, Rapsomanikis A, Kalarakis AN, Stathatos E. Enhanced performance of mesostructured perovskite solar cells in ambient conditions with a composite TiO2–In2O3 electron transport layer. Sol Energy Mater Sol Cells. 2017;166:100.

    Article  Google Scholar 

  18. Huang X, Hu Z, Xu J, Wang P, Wang L, Zhang J, Zhu Y. Low-temperature processed SnO2 compact layer by incorporating TiO2 layer toward efficient planar heterojunction perovskite solar cells. Sol Energy Mater Sol Cells. 2017;164:87.

    Article  Google Scholar 

  19. Chen G, Zheng J, Zheng L, Yan X, Lin H, Zhang F. Crack-free CH3NH3PbI3 layer via continuous dripping method for high-performance mesoporous perovskite solar cells. Appl Surf Sci. 2017;392:960.

    Article  Google Scholar 

  20. Luo J, Yang WG, Liao B, Guo HB, Shi WM, Chen YG. Improved photovoltaic performance of dye-sensitized solar cells by carbon-ion implantation of tri-layer titania film electrodes. Rare Met. 2015;34(1):34.

    Article  Google Scholar 

  21. Kojima A, Teshima K, Shirai Y, Miyasaka T. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J Am Chem Soc. 2009;131(17):6050.

    Article  Google Scholar 

  22. Im JH, Lee CR, Lee JW, Park SW, Park NG. 6.5% efficient perovskite quantum-dot-sensitized solar cell. Nanoscale. 2011;3(10):4088.

    Article  Google Scholar 

  23. Burschka J, Pellet N, Moon SJ, Baker RH, Gao P, Nazeeruddin MK, Grätzel M. Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature. 2013;499(7458):316.

    Article  Google Scholar 

  24. Zhou H, Chen Q, Li G, Luo S, Song T, Duan HS, Hong Z, You J, Liu Y, Yang Y. Photovoltaics. Interface engineering of highly efficient perovskite solar cells. Science. 2014;345(6196):542.

    Article  Google Scholar 

  25. Liu S, Cao K, Li H, Song J, Han J, Shen Y, Wang M. Full printable perovskite solar cells based on mesoscopic TiO2/Al2O3/NiO (carbon nanotubes) architecture. Sol Energy. 2017;144:158.

    Article  Google Scholar 

  26. Liu D, Li Y, Shi B, Yao X, Fan L, Zhao S, Liang J, Ding Y, Wei C, Zhang D, Zhao Y, Zhang X. Tailoring morphology and thickness of perovskite layer for flexible perovskite solar cells on plastics: the role of CH3NH3I concentration. Sol Energy. 2017;147:222.

    Article  Google Scholar 

  27. Hatamvand M, Mirjalili SA, Sharzehee M, Behjat A, Jabbari M, Skrifvars M. Fabrication parameters of low-temperature ZnO-based hole-transport-free perovskite solar cells. Optik-Int J Light Electron Opt. 2017;2:101.

    Google Scholar 

  28. Zeng W, Liu X, Wang H, Cui D, Xia R, Min Y. Mechanism study on enhanced open-circuit voltage of perovskite solar cells with vapor-induced TiO2 as electron-transport layer. Thin Solid Films. 2017;629:11.

    Article  Google Scholar 

  29. Liu Y, Shin I, Hwang IW, Lee J, Kim S, Lee DY, Lee SH, Jang JW, Jung YK, Jeong JH, Park SH, Kim KH. Effective hot-air annealing for improving the performance of perovskite solar cells. Sol Energy. 2017;146:359.

    Article  Google Scholar 

  30. Chen Z, Yang G, Zheng X, Lei H, Chen C, Ma J, Wang H, Fang G. Bulk heterojunction perovskite solar cells based on room temperature deposited hole-blocking layer: suppressed hysteresis and flexible photovoltaic application. J Power Sources. 2017;351:123.

    Article  Google Scholar 

  31. Ding XJ, Ni L, Ma SB, Ma YZ, Xiao LX, Chen ZJ. Research progress of electron transport layer in perovskite solar cells. Acta Phys Sin. 2015;64(3):95.

    Google Scholar 

  32. Ma YZ, Wang SF, Zheng LL, Lu ZL, Zhang DF, Bian ZQ, Huang CH, Xiao LX. Recent research developments of perovskite solar cells. Chin J Chem. 2014;32(10):957.

    Article  Google Scholar 

  33. Ciro J, Betancur R, Mesa S, Jaramillo F. High performance perovskite solar cells fabricated under high relative humidity conditions. Sol Energy Mater Sol Cells. 2017;163:38.

    Article  Google Scholar 

  34. Wang C. Development and working principle of perovskite solar cells. Heilongjiang Sci Technol Inf. 2016;1:36.

    Google Scholar 

  35. Qian L, Ding LM. The main factors affecting the working mechanism and properties of perovskite solar cells. Chem J Chin Univ. 2015;36(4):595.

    Google Scholar 

  36. Lee K, Cho KH, Ryu J, Yun J, Yu H, Lee J, Na W, Jang J. Low-cost and efficient perovskite solar cells using a surfactant-modified polyaniline:poly(styrenesulfonate) hole transport material. Electrochim Acta. 2017;224:600.

    Article  Google Scholar 

  37. Singh TB, Marjanovi N, Matt GJ, Günes S, Sariciftci NS, Montaigne Ramil A, Andreev A, Sitter H, Schwödiauer R, Bauer S. High-mobility n-channel organic field-effect transistors based on epitaxially grown C60 films. Org Electron. 2005;6(3):105.

    Article  Google Scholar 

  38. Bera A, Sheikh AD, Haque MA, Bose R, Alarousu E, Mohammed OF, Wu T. Fast crystallization and improved stability of perovskite solar cells with Zn2SnO4 electron transporting layer: interface matters. ACS Appl Mater Interfaces. 2015;7(51):28404.

    Article  Google Scholar 

  39. Rong Y, Ku Z, Mei A, Liu T, Xu M, Ko S, Li X, Han H. Hole-conductor-free mesoscopic TiO2/CH3NH3PbI3 heterojunction solar cells based on anatase nanosheets and carbon counter electrodes. J Phys Chem Lett. 2014;5(12):2160.

    Article  Google Scholar 

  40. Yang G, Wang YL, Xu JJ, Lei HW, Chen C, Shan HQ, Liu XY, Xu ZX, Fang GJ. A facile molecularly engineered copper (II) phthalocyanine as hole transport material for planar perovskite solar cells with enhanced performance and stability. Nano Energy. 2017;31:332.

    Google Scholar 

  41. Burschka J, Pellet N, Moon SJ, Humphry-Baker R, Gao P, Nazeeruddin MK, Grätzel M. Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature. 2013;499(7458):316.

    Article  Google Scholar 

  42. Chen JQ, Yang DH, Jiang JH, Ma AB, Song D, Chao YN, Hu MZ. Research process of electron transport layer materials in composite perovskite solar cells. Mater Rev. 2015;29(05):1.

    Article  Google Scholar 

  43. Abu Laban W, Etgar L. Depleted hole conductor-free lead halide iodide heterojunction solar cells. Energy Environ Sci. 2013;6(11):3249.

    Article  Google Scholar 

  44. Yella A, Heiniger LP, Gao P, Nazeeruddin MK, Grätzel M. Nanocrystalline rutile electron extraction layer enables low-temperature solution processed perovskite photovoltaics with 13.7% efficiency. Nano Lett. 2014;14(5):2591.

    Article  Google Scholar 

  45. Dai SM, Tian HR, Zhang ML, Xing Z, Wang LY, Wang X, Wang T, Deng LL, Xie SY, Huang RB, Zheng LS. Pristine fullerenes mixed by vacuum-free solution process: efficient electron transport layer for planar perovskite solar cells. J Power Sources. 2017;339:27.

    Article  Google Scholar 

  46. Chen P, Jin Z, Wang Y, Wang M, Chen S, Zhang Y, Wang L, Zhang X, Liu Y. Interspace modification of titania-nanorod arrays for efficient mesoscopic perovskite solar cells. Appl Surf Sci. 2017;402:86.

    Article  Google Scholar 

  47. Huang X, Hu Z, Xu J, Wang P, Zhang J, Zhu Y. Low-temperature processed ultrathin TiO2 for efficient planar heterojunction perovskite solar cells. Electrochim Acta. 2017;231:77.

    Article  Google Scholar 

  48. Sui LL, Zhai YC, Miao LH. Recovery of titania from high titanium slag by roasting method using concentrated sulfuric acid. Rare Met. 2015;34(12):895.

    Article  Google Scholar 

  49. Gopi CVVM, Venkata-Haritha M, Prabakar K, Kim HJ. Low-temperature easy-processed carbon nanotube contact for high-performance metal- and hole-transporting layer-free perovskite solar cells. J Photochem Photobiol A. 2017;332:265.

    Article  Google Scholar 

  50. Ohno T, Lee SY, Yang Y. Fabrication of morphology-controlled TiO2 photocatalyst nanoparticles and improvement of photocatalytic activities by modification of Fe compounds. Rare Met. 2015;34(5):291.

    Article  Google Scholar 

  51. Wang M, Du ZF, Lin YF, Zhao DL. Performance of dye-sensitized solar cell with ag nanowire heterojunction coated by TiO2 of different crystalline degrees. Rare Met. 2015;40(4):328.

    Google Scholar 

  52. Yu J, Zhang C, Yang S, Chen M, Lei F, Man B. Nano metal-enhanced power conversion efficiency in CH3NH3PbI3 solar cells. J Phys Chem Solids. 2017;103:323.

    Article  Google Scholar 

  53. Burschka J, Brault V, Ahmad S, Breau L, Nazeeruddin MK, Marsan B, Zakeeruddin SM, Grätzel M. Influence of the counter electrode on the photovoltaic performance of dye-sensitized solar cells using a disulfide/thiolate redox electrolyte. Energy Environ Sci. 2012;5(3):6089.

    Article  Google Scholar 

  54. Liang C, Wu Z, Li P, Fan J, Zhang Y, Shao G. Chemical bath deposited rutile TiO2 compact layer toward efficient planar heterojunction perovskite solar cells. Appl Surf Sci. 2017;391:337.

    Article  Google Scholar 

  55. Wang P, Zhang J, Chen R, Zeng Z, Huang X, Wang L, Xu J, Hu Z, Zhu Y. Planar heterojunction perovskite solar cells with TiO2 scaffold in perovskite film. Electrochim Acta. 2017;227:180.

    Article  Google Scholar 

  56. Xiao G, Shi C, Zhang Z, Li N, Li L. Short-length and high-density TiO2 nanorod arrays for the efficient charge separation interface in perovskite solar cells. J Solid State Chem. 2017;249:169.

    Article  Google Scholar 

  57. Li S, Zhang P, Chen H, Wang Y, Liu D, Wu J, Sarvari H, Chen ZD. Mesoporous PbI2 assisted growth of large perovskite grains for efficient perovskite solar cells based on ZnO nanorods. J Power Sources. 2017;342:990.

    Article  Google Scholar 

  58. Crossland EJ, Noel N, Sivaram V, Leijtens T, Alexander-Webber JA, Snaith HJ. Mesoporous TiO2 single crystals delivering enhanced mobility and optoelectronic device performance. Nature. 2013;495(7440):215.

    Article  Google Scholar 

  59. Conings B, Baeten L, Jacobs T, Dera R, D’Haen J, Manca J, Boyen HG. An easy-to-fabricate low-temperature TiO2 electron collection layer for high efficiency planar heterojunction perovskite solar cells. APL Mater. 2014;2(8):641.

    Article  Google Scholar 

  60. Yu ZH, Qi F, Liu P, You S, Kondamareddy KK, Wang C, Cheng N, Bai S, Liu W, Guo S, Zhao XZ. A composite nanostructured electron-transport layer for stable hole-conductor free perovskite solar cells: design and characterization. Nanoscale. 2016;8(11):5847.

    Article  Google Scholar 

  61. Li F, Bao CX, Gao H, Zhu WD, Yu T, Yang J, Fu G, Zhou XX, Zou ZG. A facile spray-assisted fabrication of homogenous flat CH3NH3PbI3 films for high performance mesostructured perovskite solar cells. Mater Lett. 2015;157:38.

    Article  Google Scholar 

  62. Bi Z, Liang Z, Xu X, Chai Z, Jin H, Xu D, Li J, Li M, Xu G. Fast preparation of uniform large grain size perovskite thin film in air condition via spray deposition method for high efficient planar solar cells. Sol Energy Mater Sol Cells. 2017;162:13.

    Article  Google Scholar 

  63. Lin L, Jiang L, Qiu Y, Yu Y. Modeling and analysis of HTM-free perovskite solar cells based on ZnO electron transport layer. Superlattices Microstruct. 2017;104:167.

    Article  Google Scholar 

  64. Ruankham P, Wongratanaphisan D, Gardchareon A, Phadungdhitidhada S, Choopun S, Sagawa T. Full coverage of perovskite layer onto ZnO nanorods via a modified sequential two-step deposition method for efficiency enhancement in perovskite solar cells. Appl Surf Sci. 2017;410:393.

    Article  Google Scholar 

  65. Kumar MH, Yantara N, Dharani S, Graetzel M, Mhaisalkar S, Boix PP, Mathews N. Flexible, low-temperature, solution processed ZnO-based perovskite solid state solar cells. Chem Commun (Camb). 2013;49(94):11089.

    Article  Google Scholar 

  66. Liu D, Kelly TL. Perovskite solar cells with a planar heterojunction structure prepared using room-temperature solution processing techniques. Nat Photonics. 2014;8(2):133.

    Article  Google Scholar 

  67. Ameen S, Akhtar MS, Seo HK, Nazeeruddin MK, Shin HS. An insight into atmospheric plasma jet modified ZnO quantum dots thin film for flexible perovskite solar cell: optoelectronic transient and charge trapping studies. J Phys Chem C. 2015;119(19):10379.

    Article  Google Scholar 

  68. Zheng HD, Tachibana Y. Dye-sensitized solar cells based on WO3. Langmuir. 2010;26(24):19148.

    Article  Google Scholar 

  69. Gheno A, Thu Pham TT, Di Bin C, Bouclé J, Ratier B, Vedraine S. Printable WO3 electron transporting layer for perovskite solar cells: influence on device performance and stability. Sol Energy Mater Sol Cells. 2017;161:347.

    Article  Google Scholar 

  70. Dong QS, Shi YT, Wang K, Li Y, Wang SF, Zhang H, Xing YJ, Du Y, Bai XG, Ma TL. Insight into perovskite solar cells based on SnO2 compact electron-selective layer. J Phys Chem C. 2015;119(19):10212.

    Article  Google Scholar 

  71. Park JI, Heo JH, Park SH, Hong KI, Jeong HG, Im SH, Kim HK. Highly flexible InSnO electrodes on thin colourless polyimide substrate for high-performance flexible CH3NH3PbI3 perovskite solar cells. J Power Sources. 2017;341:340.

    Article  Google Scholar 

  72. Zhu ZL, Zheng XL, Bai Y, Zhang T, Wang ZL, Xiao S, Yang SH. Mesoporous SnO2 single crystals as an effective electron collector for perovskite solar cells. Phys Chem Chem Phys. 2015;17(28):18265.

    Article  Google Scholar 

  73. Chen JY, Chueh CC, Zhu Z, Chen WC, Jen AKY. Low-temperature electrodeposited crystalline SnO2 as an efficient electron-transporting layer for conventional perovskite solar cells. Sol Energy Mater Sol Cells. 2017;164:47.

    Article  Google Scholar 

  74. Song JX, Zheng EQ, Bian J, Wang XF, Tian WJ. Low-temperature SnO2-based electron selective contact for efficient and stable perovskite solar cells. J Mater Chem A. 2015;3(20):10837.

    Article  Google Scholar 

  75. Wu CG, Chiang CH, Tseng ZL. Planar heterojunction perovskite/PC71BM solar cells with enhanced open-circuit voltage via (2/1)-step spin-coating process. J Mater Chem A. 2014;2(38):15897.

    Article  Google Scholar 

  76. Jeng J, Chiang Y, Lee M, Peng S, Guo T. CH3NH3PbI3 perovskite/fullerene planar-heterojunction hybrid solar cells. Adv Mater. 2013;25(27):3727.

    Article  Google Scholar 

  77. Li XD, Wang XY, Zhang WJ, Wu YL, Gao F, Fang JF. The effect of external electric field on the performance of perovskite solar cells. Org Electron. 2015;18:107.

    Article  Google Scholar 

  78. Docampo P, Ball JM, Darwich M, Eperon GE, Snaith HJ. Efficient organometal trihalide perovskite planar-heterojunction solar cells on flexible polymer substrates. Nat Commun. 2013;4(7):657.

    Google Scholar 

  79. You J, Hong Z, Yang Y, Chen C, Chang W, Yoshimura K, Ohya K. An efficient triple-junction polymer solar cell having a power conversion efficiency exceeding 11%. Adv Mater. 2014;26(32):5670.

    Article  Google Scholar 

  80. Nie W, Tsai H, Asadpour R, Blancon JC, Neukirch AJ, Gupta G, Crochet JJ, Chhowalla M, Tretiak S, Alam MA, Wang HL, Mohite AD. High-efficiency solution-processed perovskite solar cells with millimeter-scale grains. Science. 2015;347(6221):522.

    Article  Google Scholar 

  81. Chiang CH, Wu CG. Bulk heterojunction perovskite-PCBM solar cells with high fill factor. Nat Photonics. 2016;10:196.

    Article  Google Scholar 

  82. Chandiran AK, Yella A, Mayer MT, Gao P, Nazeeruddin MK, Grätzel M. Sub-nanometer conformal TiO2 blocking layer for high efficiency solid-state perovskite absorber solar cells. Adv Mater. 2014;26(25):4309.

    Article  Google Scholar 

  83. Li Y. Research of mesoporous perovskite solar cells and new oxide solar cells. Hefei: University of Science and Technology of China; 2015. 44.

    Google Scholar 

  84. Seo J, Park S, Chan Kim Y, Joong Jeon N, Hong Noh J, Cheol Yoon S, Seok SI. Benefits of very thin PCBM and LiF layers for solution-processed p-i-n perovskite solar cells. Energy Environ Sci. 2014;7(7):2642.

    Article  Google Scholar 

  85. Wojciechowski K, Saliba M, Leijtens T, Abate A, Snaith HJ. Sub-150°C processed meso-superstructured perovskite solar cells with enhanced efficiency. Science. 2013;7:1142.

    Google Scholar 

  86. Nagaoka H, Ma F, de Quilettes DW, Vorpahl SM, Glaz MS, Colbert AE, Ziffer ME, Ginger DS. Zr incorporation into TiO2 electrodes reduces hysteresis and improves performance in hybrid perovskite solar cells while increasing carrier lifetimes. J Phys Chem Lett. 2015;6(4):669.

    Article  Google Scholar 

  87. Wang P, Zhao J, Liu J, Wei L, Liu Z, Guan L, Cao G. Stabilization of organometal halide perovskite films by SnO2 coating with inactive surface hydroxyl groups on ZnO nanorods. J Power Sources. 2017;339:51.

    Article  Google Scholar 

  88. Zhang W, Xiong J, Wang S, Liu WE, Li J, Wang D, Gu H, Wang X, Li J. Highly conductive and transparent silver grid/metal oxide hybrid electrodes for low-temperature planar perovskite solar cells. J Power Sources. 2017;337:118.

    Article  Google Scholar 

  89. Yan PR, Huang WJ, Yang SH. Incorporation of quaternary ammonium salts containing different counterions to improve the performance of inverted perovskite solar cells. Chem Phys Lett. 2017;669:143.

    Article  Google Scholar 

  90. Mahmood K, Swain BS, Jung HS. Controlling the surface nanostructure of ZnO and Al-doped ZnO thin films using electrostatic spraying for their application in 12% efficient perovskite solar cells. Nanoscale. 2014;6(15):9127.

    Article  Google Scholar 

  91. Shirazi M, Sabet Dariani R, Toroghinejad MR. Efficiency enhancement of hole-conductor-free perovskite solar cell based on ZnO nanostructure by Al doping in ZnO. J Alloy Compd. 2017;692:492.

    Article  Google Scholar 

  92. Lai WC, Lin KW, Guo TF, Chen P, Wang YT. Conversion efficiency improvement of inverted CH3NH3PbI3 perovskite solar cells with room temperature sputtered ZnO by adding the C60 interlayer. Appl Phys Lett. 2015;107(25):253301.

    Article  Google Scholar 

  93. Wang Q, Shao YC, Dong QF, Xiao ZG, Yuan YB, Huang JS. Efficient, high yield perovskite photovoltaic devices grown by inter diffusion of solution-processed precursor stacking layers. Energy Environ Sci. 2014;7(8):2619.

    Article  Google Scholar 

  94. Chueh CC, Liao CY, Zuo F, Spencer T, Williams Liang PW, Jen AKY. The roles of alkyl halide additives in enhancing perovskite solar cell performance. J Materi Chem A. 2014;16(17):9058.

    Google Scholar 

  95. Im JH, Lee CR, Lee JW, Park SW. 6.5% efficient perovskite quantum-dot-sensitized solar cell. Nanoscale. 2011;3(10):4088.

    Article  Google Scholar 

  96. Qin P, Domanski AL, Chandiran AK, Berger G, Butt HJ, Dar MI, Moehl T, Tetreault N, Gao P, Ahmad S, Nazeeruddin MK, Grätzel M. Yttrium-substituted nanocrystalline TiO2 photoanodes for perovskite based heterojunction solar cells. Nanoscale. 2013;6(3):1508.

    Article  Google Scholar 

  97. Lee MM, Teuscher J, Miyasaka T, Murakami TN, Snaith HJ. Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites. Science. 2012;338(6107):643.

    Article  Google Scholar 

  98. Xiao Y, Cheng N, Kondamareddy KK, Wang C, Liu P, Guo S, Zhao XZ. W-doped TiO2 mesoporous electron transport layer for efficient hole transport material free perovskite solar cells employing carbon counter electrodes. J Power Sources. 2017;342:489.

    Article  Google Scholar 

  99. Wang JTW, Ball JM, Barea EM, Abate A, Alexander Webber JA. Low-temperature processed electron collection layers of graphene/TiO2 nanocomposites in thin film perovskite solar cells. Nano Lett. 2014;14(2):724.

    Article  Google Scholar 

  100. Ito S, Tanaka S, Manabe K, Nishino H. Effects of surface blocking layer of Sb2S3 on nanocrystalline TiO2 for CH3NH3PbI3 perovskite solar cells. J Phys Chem C. 2014;118(30):16995.

    Article  Google Scholar 

  101. Huang CY, Fu WF, Li CZ, Zhang ZQ, Qiu WM, Shi MM, Heremans P, Jen AKY, Chen HZ. A dopant-free hole-transporting material with a C3h symmetrical truxene core for highly efficient perovskite solar cells. J Am Chem Soc. 2016;138(8):2528.

    Article  Google Scholar 

  102. Zhu Z, Ma J, Wang Z, Mu C, Fan Z, Du L, Bai Y, Fan LZ, Yan H, Phillips DL, Yang SH. Efficiency enhancement of perovskite solar cells through fast electron extraction: the role of graphene quantum dots. J Am Chem Soc. 2014;136(10):3760.

    Article  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the Priority Academic Program Development of Jiangsu Higher Education Institutions (No.SZBF201437) and A Funding of Jiangsu Innovation Program for Graduate Education (No.SJLX16_0429).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gong-Ping Mao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mao, GP., Wang, W., Shao, S. et al. Research progress in electron transport layer in perovskite solar cells. Rare Met. 37, 95–106 (2018). https://doi.org/10.1007/s12598-017-0951-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-017-0951-4

Keywords

Navigation