Rare Metals

, Volume 38, Issue 12, pp 1136–1143 | Cite as

Processing maps and microstructural evolution of Al–Cu–Li alloy during hot deformation

  • Sheng-Li Yang
  • Jian ShenEmail author
  • Yong-An Zhang
  • Zhi-Hui Li
  • Xi-Wu Li
  • Shu-Hui Huang
  • Bai-Qing Xiong


The hot deformation behavior of Al–Cu–Li alloy was investigated by hot compression tests in the temperature range of 340–500 °C with strain rate of 0.001–10.000 s−1. Based on the dynamic materials model (DMM), processing maps of the test alloy were developed for optimizing hot processing parameters. The optimum parameters of hot deformation for Al–Cu–Li alloy are at temperature of 400–430 °C and strain rate of about 0.100 s−1, with efficiency of power dissipation of around 30%. The microstructural manifestation of the alloy deformed in instability domains is flow localization, and dynamic softening first occurs in flow localizations structure. In stable domains, dynamic recovery (DRV) and dynamic recrystallization (DRX) are the main microstructural evolution mechanism. DRX is gradually strengthened with the increase in deformation temperature and the decrease in strain rate. During hot deformation, the DRX mechanism of Al–Cu–Li alloy is dominated by continuous DRX (CDRX). A DRX model of Al–Cu–Li alloy is proposed based on the microstructural evolution process of the test alloy.


Al–Cu–Li alloy Processing map Dynamic recovery and dynamic recrystallization Microstructural evolution 



This study was financially supported by the National Program on Key Basic Research Project of China (No. 2012CB619504) and the National Natural Science Foundation of China (No. 51274046).


  1. [1]
    Pasang T, Symonds N, Moutsos S, Wanhill RJH, Lynch SP. Low-energy intergranular fracture in Al–Li alloys. Eng Fail Anal. 2012;22(6):166.CrossRefGoogle Scholar
  2. [2]
    Qin HL, Zhang H, Wu HQ. The evolution of precipitation and microstructure in friction stir welded 2195-T8 Al–Li alloy. Mater Sci Eng, A. 2015;626(3):322.CrossRefGoogle Scholar
  3. [3]
    Heinz A, Haszler A, Keidel C, Moldenhauer S, Benedictus R, Miller WS. Recent development in aluminium alloys for aerospace applications. Mater Sci Eng, A. 2000;280(1):102.CrossRefGoogle Scholar
  4. [4]
    Alexopoulos ND, Migklis M, Stylianos A, Myriounis DP. Fatigue behavior of the aeronautical Al–Li (2198) aluminum alloy under constant amplitude loading. Int J Fatigue. 2013;56(11):95.CrossRefGoogle Scholar
  5. [5]
    Li HZ, Wang HJ, Liang XP, Liu HT, Liu Y, Zhang XM. Hot deformation and processing map of 2519A aluminum alloy. Mater Sci Eng A. 2011;528(3):1548.CrossRefGoogle Scholar
  6. [6]
    Wu HY, Wu CT, Yang JC, Lin MJ. Hot workability analysis of AZ61 Mg alloys with processing maps. Mater Sci Eng A. 2014;607(9):261.CrossRefGoogle Scholar
  7. [7]
    Peng XN, Guo HZ, Shi ZF, Qin C, Zhao ZL, Yao ZK. Study on the hot deformation behavior of TC4-DT alloy with equiaxed α + β starting structure based on processing map. Mater Sci Eng A. 2014;605(4):80.CrossRefGoogle Scholar
  8. [8]
    Yin H, Li HY, Su XJ, Huang DS. Processing maps and microstructural evolution of isothermal compressed Al–Cu–Li alloy. Mater Sci Eng A. 2013;586(6):115.CrossRefGoogle Scholar
  9. [9]
    Jagan Reddy G, Srinivasan N, Gokhale Amol A, Kashyap BP. Processing map for hot working of spray formed and hot isostatically pressed Al–Li alloy (UL40). J Mater Process Technol. 2009;209(18):5964.CrossRefGoogle Scholar
  10. [10]
    Nayan N, Gurao NP, Narayana Murty SVS, Jha Abhay K, Pant B, Sharma SC, George Koshy M. Microstructure and micro-texture evolution during large strain deformation of an aluminium-copper-lithium alloy AA 2195. Mater Des. 2015;65(10):862.CrossRefGoogle Scholar
  11. [11]
    Xun Y, Tan MJ. EBSD characterization of 8090 Al–Li alloy during dynamic and static recrystallization. Mater Charact. 2004;52(3):187.CrossRefGoogle Scholar
  12. [12]
    Sakai T, Miura H, Goloborodko A, Sitdikov O. Continuous dynamic recrystallization during the transient severe deformation of aluminum alloy 7475. Acta Mater. 2009;57(1):153.CrossRefGoogle Scholar
  13. [13]
    Sitdikov O, Sakai T, Goloborodko A, Miura H. Grain fragmentation in a coarse-grained 7475 Al alloy during hot deformation. Scripta Mater. 2004;51(2):175.CrossRefGoogle Scholar
  14. [14]
    Li JQ, Liu J, Cui ZS. Characterization of hot deformation behavior of extruded ZK60 magnesium alloy using 3D processing maps. Mater Des. 2014;56(4):889.CrossRefGoogle Scholar
  15. [15]
    Jenab A, Karimi Taheri A. Experimental investigation of the hot deformation behavior of AA7075: development and comparison of flow localization parameter and dynamic material model processing maps. Int J Mech Sci. 2014;78(1):97.CrossRefGoogle Scholar
  16. [16]
    Li DH, Yang Y, Xu T, Zheng HQ, Zhu QS, Zhang QM. Observation of the microstructure in the adiabatic shear band of 7075 aluminum alloy. Mater Sci Eng A. 2010;527(15):3529.CrossRefGoogle Scholar
  17. [17]
    Humphreys FJ, Hatherly M. Recrystallization and Related Annealing Phenomena. Oxford: Pergamon Press; 2000. 427.Google Scholar
  18. [18]
    Doherty RD, Hughes DA, Humpherys FJ, Jonas JJ, Juul Jensen D, Kassner ME, King WE, McNelley TR, McQueen HJ, Rollett AD. Current issues in recrystallization: a review. Mater Sci Eng A. 1997;238(2):219.CrossRefGoogle Scholar
  19. [19]
    Prasad YVRK. Processing maps: a status report. J Mater Eng Perform. 2003;12(6):638.CrossRefGoogle Scholar
  20. [20]
    Lin YC, Li LT, Xia YC, Jiang YQ. Hot deformation and processing map of a typical Al–Zn–Mg–Cu alloy. J Alloy Compd. 2013;550(6):438.CrossRefGoogle Scholar
  21. [21]
    Kapoor R, Shekhawat SK, Samajdar I. Flow localization in an Al–2.5Mg alloy after severe plastic deformation. Mater Sci Eng A. 2014;611(9):114.CrossRefGoogle Scholar
  22. [22]
    Reddy GJ, Srinivasan N, Gokhale AA, Kashyap BP. Characterisation of dynamic recovery during hot deformation of spray formed Al–Li alloy (UL40) using processing map approach. Mater Sci Technol. 2008;24(6):725.CrossRefGoogle Scholar

Copyright information

© The Nonferrous Metals Society of China and Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.State Key Laboratory of Nonferrous Metals and ProcessesGeneral Research Institute for Nonferrous MetalsBeijingChina

Personalised recommendations