Rare Metals

, Volume 38, Issue 10, pp 954–964 | Cite as

Structure and electrochemical performances of Mg20−xYxNi10 (x = 0–4) alloys prepared by mechanical milling

  • Yang-Huan ZhangEmail author
  • Xi-Ping Song
  • Pei-Long Zhang
  • Yong-Guo Zhu
  • Hui-Ping Ren
  • Bao-Wei Li


Mg2Ni-type Mg20−xYxNi10 (x = 0, 1, 2, 3 and 4) electrode alloys were fabricated by vacuum induction melting. Subsequently, the as-cast alloys were mechanically milled on a planetary-type ball mill. The effects of milling time and Y content on the microstructures and electrochemical performances of the alloys were investigated in detail. The results show that nanocrystalline and amorphous structure can be successfully obtained through mechanical milling. The substitution of Y for Mg facilitates the glass forming of the Mg2Ni-type alloy and significantly enhances the electrochemical characteristics of the alloy electrodes. Moreover, the discharge capacity of Y-free alloy monotonously grows with the milling time prolonging, while that of the Y-substituted alloys has the maximum values in the same case. The milling time of obtaining the greatest discharge capacity markedly decreases with Y content increasing. The electrochemical kinetics of the alloys, including high rate discharge ability (HRD), diffusion coefficient (D), limiting current density (IL) and charge transfer rate, monotonously increase with milling time extending.


Mg2Ni-type alloy Y substitution for Mg Milling duration Electrochemical performances 



This study was financially supported by the National Natural Science Foundations of China (Nos. 51161015 and 51371094) and the State Key Laboratory of Advanced Metals and Materials (No. 2011-ZD06).


  1. [1]
    Dibandjo P, Zlotea C, Gadiou R, Ghimbeu CM, Cuevas F, Latroche M, Leroy E, Vix-Guterl C. Hydrogen storage in hybrid nanostructured carbon/palladium materials: influence of particle size and surface chemistry. Int J Hydrogen Energy. 2013;38(2):952.CrossRefGoogle Scholar
  2. [2]
    Meng ZS, Lu RF, Rao DW, Kan E, Xiao CY, Deng KM. Catenated metal-organic frameworks: promising hydrogen purification materials and high hydrogen storage medium with further lithium doping. Int J Hydrogen Energy. 2013;38(23):9811.CrossRefGoogle Scholar
  3. [3]
    Jorge AM Jr, Prokofiev E, Ferreira de Lima G, Rauch E, Veron M, Botta WJ, Kawasaki M, Langdon TG. An investigation of hydrogen storage in a magnesium-based alloy processed by equal-channel angular pressing. Int J Hydrogen Energy. 2013;38(20):8306.CrossRefGoogle Scholar
  4. [4]
    Xie DH, Li P, Zeng CX, Sun JW, Qu XH. Effect of substitution of Nd for Mg on the hydrogen storage properties of Mg2Ni alloy. J Alloys Compd. 2009;478(1–2):96.CrossRefGoogle Scholar
  5. [5]
    Wang H, Zhang J, Liu JW, Ouyang LZ, Zhu M. Improving hydrogen storage properties of MgH2 by addition of alkali hydroxides. Int J Hydrogen Energy. 2013;38(20):10932.CrossRefGoogle Scholar
  6. [6]
    Zhu YF, Yang C, Zhu JY, Li LQ. Structural and electrochemical hydrogen storage properties of Mg2Ni-based alloys. J Alloys Compd. 2011;509(17):5309.CrossRefGoogle Scholar
  7. [7]
    Anik M, Akay I, Topcu S. Effect of electroless nickel coating on the electrochemical hydrogen storage characteristics of Al and Zr including Mg-based alloys. Int J Hydrogen Energy. 2009;34(13):5449.CrossRefGoogle Scholar
  8. [8]
    Liu ZP, Yang SQ, Li Y, Liu JJ, Ma MZ, Han SM. Phase structure and electrochemical performances of Co-free La–Mg–Ni-based alloys with Nd/Sm partial substitution for La. Rare Met. 2014;33(6):674.CrossRefGoogle Scholar
  9. [9]
    Kim JW, Ahn JP, Jin SA, Lee SH, Chung HS, Shim JH, Cho YW, Oh KH. Microstructural evolution of NbF5-doped MgH2 exhibiting fast hydrogen sorption kinetics. J Power Sources. 2008;178(1):373.CrossRefGoogle Scholar
  10. [10]
    Rivoirard S, de Rango P, Fruchart D, Charbonnier J, Vempaire D. Catalytic effect of additives on the hydrogen absorption properties of nano-crystalline MgH2(X) composites. J Alloys Compd. 2003;356–357:622.CrossRefGoogle Scholar
  11. [11]
    Wang Y, Qiao SZ, Wang X. Electrochemical hydrogen storage properties of ball-milled NdMg12 alloy with Ni powders. Int J Hydrogen Energy. 2008;33(3):1023.CrossRefGoogle Scholar
  12. [12]
    Hima Kumar L, Viswanathan B, Srinivasa Murthy S. Hydrogen absorption by Mg2Ni prepared by polyol reduction. J Alloys Compd. 2008;461(1–2):72.CrossRefGoogle Scholar
  13. [13]
    Ebrahimi-Purkani A, Kashani-Bozorg SF. Nanocrystalline Mg2Ni-based powders produced by high-energy ball milling and subsequent annealing. J Alloys Compd. 2008;456(1–2):211.CrossRefGoogle Scholar
  14. [14]
    Dornheim M, Doppiu S, Barkhordarian G, Boesenberg U, Klassen T, Gutfleisch O, Bormann R. Hydrogen storage in magnesium-based hydrides and hydride composites. Scr Mater. 2007;56(10):841.CrossRefGoogle Scholar
  15. [15]
    Teresiak A, Gebert A, Savyak M, Uhlemann M, Mickel C, Mattern N. In situ high temperature XRD studies of the thermal behaviour of the rapidly quenched Mg77Ni18Y5 alloy under hydrogen. J Alloys Compd. 2005;398(1–2):156.CrossRefGoogle Scholar
  16. [16]
    Ruggeri S, Roué L, Huot J, Schulz R, Aymard L, Tarascon JM. Properties of mechanically alloyed Mg–Ni–Ti ternary hydrogen storage alloys for Ni-MH batteries. J Power Sources. 2002;112(2):547.CrossRefGoogle Scholar
  17. [17]
    Aono K, Orimo S, Fujii H. Structural and hydriding properties of MgYNi4: a new intermetallic compound with C15b-type Laves phase structure. J Alloys Compd. 2000;309(1–2):L1.CrossRefGoogle Scholar
  18. [18]
    Zhang YH, Yang T, Shang HW, Zhao C, Xu C, Zhao DL. The electrochemical hydrogen storage characteristics of as-spun nanocrystalline and amorphous Mg20Ni10−xMx (M = Cu Co, Mn; x = 0–4) alloys. Rare Met. 2014;33(6):663.CrossRefGoogle Scholar
  19. [19]
    Zhang YH, Li C, Cai Y, Hu F, Liu ZC, Guo SH. Highly improved electrochemical hydrogen storage performances of the Nd–Cu–added Mg2Ni-type alloys by melt spinning. J Alloys Compd. 2014;584:81.CrossRefGoogle Scholar
  20. [20]
    Niua H, Northwood DO. Enhanced electrochemical properties of ball-milled Mg2Ni electrodes. Int J Hydrogen Energy. 2002;27(1):69.CrossRefGoogle Scholar
  21. [21]
    Tanaka K, Kanda Y, Furuhashi M, Saito K, Kuroda K, Saka H. Improvement of hydrogen storage properties of melt-spun Mg–Ni–RE alloys by nanocrystallization. J Alloys Compd. 1999;293–295:521.CrossRefGoogle Scholar
  22. [22]
    Spassov T, Lyubenova L, Köster U, Baró MD. Mg–Ni–RE nanocrystalline alloys for hydrogen storage. Mater Sci Eng A. 2004;375–377:794.CrossRefGoogle Scholar
  23. [23]
    Cui N, Luan B, Zhao HJ, Liu HK, Dou SX. Effects of yttrium additions on the electrode performance of magnesium-based hydrogen storage alloys. J Alloys Compd. 1996;233(1–2):236.CrossRefGoogle Scholar
  24. [24]
    Endo D, Sakaki K, Akiba E. Formation of lattice strain in MmNi4.30−xCoxAl0.30Mn0.40 (x = 0, 0.75) during hydrogenation. Int J Hydrogen Energy. 2007;32(17):4202.CrossRefGoogle Scholar
  25. [25]
    Zuttel A, Meli F, Schtapbach I. AB2 and AB5 metal hydride electrodes: a phenomenological model for the cycle life. J Alloys Compd. 1993;200(1–2):157.CrossRefGoogle Scholar
  26. [26]
    Zaluski L, Zaluska A, Strom-Olesen JO. Nanocrystalline metal hydrides. J Alloys Compd. 1997;253–254:70.CrossRefGoogle Scholar
  27. [27]
    Simičić MV, Zdujić M, Dimitrijević R, Nikolić-Bujanović L, Popović NH. Hydrogen absorption and electrochemical properties of Mg2Ni-type alloys synthesized by mechanical alloying. J Power Sources. 2006;158(1):730.CrossRefGoogle Scholar
  28. [28]
    Ren HP, Zhang YH, Li BW, Zhao DL, Guo SH, Wang XL. Influence of the substitution of La for Mg on the microstructure and hydrogen storage characteristics of Mg20−xLaxNi10 (x = 0–6) alloys. Int J Hydrogen Energy. 2009;34(3):1429.CrossRefGoogle Scholar
  29. [29]
    Gasiorowski A, Iwasieczko W, Skoryna D, Drulis H, Jurczyk M. Hydriding properties of nanocrystalline Mg2−xMxNi alloys synthesized by mechanical alloying (M = Mn, Al). J Alloys Compd. 2004;364(1–2):283.CrossRefGoogle Scholar
  30. [30]
    Wang ZM, Zhou HY, Gu ZF, Cheng G, Yu AB. Preparation of Mg2−xRExNi (RE = La, Ce, Pr, Nd, Y) alloys and their electrochemical characteristics. J Alloys Compd. 2004;381(1–2):234.CrossRefGoogle Scholar
  31. [31]
    Zhao XY, Ding Y, Ma LQ, Wang LY, Yang M, Shen XD. Electrochemical properties of MmNi3.8Co0.75Mn0.4Al0.2 hydrogen storage alloy modified with nanocrystalline nickel. Int J Hydrogen Energy. 2008;33(22):6727.CrossRefGoogle Scholar
  32. [32]
    Kuriyama N, Sakai T, Miyamura H, Uehara I, Ishikawa H, Iwasaki T. Electrochemical impedance and deterioration behavior of metal hydride electrodes. J Alloys Compd. 1993;202(1–2):183.CrossRefGoogle Scholar
  33. [33]
    Zheng G, Popov BN, White RE. Electrochemical determination of the diffusion coefficient of hydrogen through an LaNi4.25Al0.75 electrode in alkaline aqueous solution. J Electrochem Soc. 1995;142(8):2695.CrossRefGoogle Scholar
  34. [34]
    Ratnakumar BV, Witham C, Bowman RC Jr, Hightower A, Fultz B. Electrochemical studies on LaNi5−xSnx metal hydride alloys. J Electrochem Soc. 1996;143(8):2578.CrossRefGoogle Scholar
  35. [35]
    Wu Y, Han W, Zhou SX, Lototsky MV, Solberg JK, Yartys VA. Microstructure and hydrogenation behavior of ball-milled and melt-spun Mg–10Ni–2 Mm alloys. J Alloys Compd. 2008;466(1–2):176.CrossRefGoogle Scholar
  36. [36]
    Jafarian M, Azizi O, Gobal F, Mahjani MG. Kinetics and electrocatalytic behavior of nanocrystalline CoNiFe alloy in hydrogen evolution reaction. Int J Hydrogen Energy. 2007;32(12):1686.CrossRefGoogle Scholar

Copyright information

© The Nonferrous Metals Society of China and Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Key Laboratory of Integrated Exploitation of Baiyun Obo Multi-Metal ResourcesInner Mongolia University of Science and TechnologyBaotouChina
  2. 2.State Key Laboratory for Advanced Metals and MaterialsUniversity of Science and Technology BeijingBeijingChina
  3. 3.Beijing Whole Win Materials Sci. & Tech. Co., Ltd.BeijingChina

Personalised recommendations