Advertisement

Rare Metals

, Volume 38, Issue 4, pp 287–291 | Cite as

Synthesis of anatase TiO2 with exposed {001} and {101} facets and photocatalytic activity

  • Jia Sun
  • Ming ZhangEmail author
  • Zhi-Feng Wang
  • Hai-Yan Chen
  • Ye Chen
  • Naoya Murakami
  • Teruhisa Ohno
Article
  • 206 Downloads

Abstract

Anatase titanium(IV) oxide (TiO2) particles with exposed {001} and {101} facets were prepared by hydrothermal treatment of amorphous TiO2 with H2O2–NH3 solution. Crystal phase, shape, and size of TiO2 particles are found to be greatly dependent on the ratio of H2O2–NH3 solution. The prepared TiO2 particles with specific exposed crystal faces show higher photocatalytic activity for acetaldehyde decomposition than commercial spherical TiO2 particles. This result implies that recombination is prevented by spatial separation of redox sites in the particles because of selective migration of electrons and positive holes to specific exposed crystal faces and/or different reactivity of electrons and positive holes on the specific exposed crystal face.

Keywords

Anatase {001} and {101} facets H2O2–NH3 

Notes

Acknowledgments

This work was financially supported by the Programs of Japan Science and Technology Agency: Promoting Individual Research to Nature the Seeds of Future Innovation and Organizing the Unique and Innovative Network, and Advanced Catalytic Transformation Program for Carbon Utilization.

References

  1. [1]
    Yan CH, Xie ZY, Wang ZF, Zhang ZJ, Wu YY, Zhang M. The preparation of TiO2/PS composite microspheres and study of its magnetic properties. Chin J Rare Metals. 2013;37(4):650.Google Scholar
  2. [2]
    Wang CL, Gao XD, Li XM, Jiang ZW, Yang ZH, Gu ZY, He P. Hybrid photoanode films based on sparse ZnO rod array—TiO2 nanoparticles in dye-sensitized solar cells. Sci China-Phys Mech Astron. 2012;55(7):1183.CrossRefGoogle Scholar
  3. [3]
    Nakata K, Fujishima A. TiO2 photocatalysis: design and applications. J Photochem Photobiol C-Photochem Rev. 2012;13(3):169.CrossRefGoogle Scholar
  4. [4]
    Chen XB, Mao SS. Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications. Chem Rev. 2007;107(7):2891.CrossRefGoogle Scholar
  5. [5]
    Diebold U. The surface science of titanium dioxide. Surf Sci Rep. 2003;48(5–8):53.CrossRefGoogle Scholar
  6. [6]
    Ohtani B. Photocatalysis A to Z—what we know and what we do not know in a scientific sense. J Photochem Photobiol C. 2010;11(4):157.CrossRefGoogle Scholar
  7. [7]
    Yamamoto T, Ohno T. A hybrid density functional study on the electron and hole trap states in anatase titanium dioxide. Phys Chem Chem Phys. 2012;14(2):589.CrossRefGoogle Scholar
  8. [8]
    Dai Y, Cobley CM, Zeng J, Sun YM, Xia YN. Synthesis of anatase TiO2 nanocrystals with exposed 001 facets. Nano Lett. 2009;9(6):2455.CrossRefGoogle Scholar
  9. [9]
    Liu M, Piao LY, Zhao L, Ju ST, Yan ZJ, He T, Zhou CL, Wang WJ. Anatase TiO2 single crystals with exposed 001 and 110 facets: facile synthesis and enhanced photocatalysis. Chem Commun. 2010;46(10):1664.CrossRefGoogle Scholar
  10. [10]
    Wang DH, Liu J, Huo QS, Nie ZM, Lu WG, Williford RE, Jiang YB. Surface-mediated growth of transparent, oriented, and well-defined nanocrystalline anatase titania films. J Am Chem Soc. 2006;128(42):13670.CrossRefGoogle Scholar
  11. [11]
    Amano F, Yasumoto T, Mahaney OOP, Uchida S, Shibayama T, Terada Y, Ohtani B. Highly active titania photocatalyst particles of controlled crystal phase, size, and polyhedral shapes. Top Catal. 2010;53(7–10):455.CrossRefGoogle Scholar
  12. [12]
    Murakami N, Kurihara Y, Tsubota T, Ohno T. Shape-controlled anatase titanium (IV) oxide particles prepared by hydrothermal treatment of peroxo titanic acid in the presence of polyvinyl alcohol. J Phys Chem C. 2009;113(8):3062.CrossRefGoogle Scholar
  13. [13]
    Li JM, Yu YX, Chen QW, Li JJ, Xu DS. Controllable synthesis of TiO2 single crystals with tunable shapes using ammonium-exchanged titanate nanowires as precursors. Cryst Growth Des. 2010;10(5):2111.CrossRefGoogle Scholar
  14. [14]
    Jiang HB, Cuan QA, Wen CZ, Xing J, Wu D, Gong XQ, Li CZ, Yang HG. Anatase TiO2 crystals with exposed high-index facets. Angew Chemi-Int Ed. 2011;50(16):3764.CrossRefGoogle Scholar
  15. [15]
    Amano F, Prieto-Mahaney OO, Terada Y, Yasumoto T, Shibayama T, Ohtani B. Decahedral single-crystalline particles of anatase titanium(IV) oxide with high photocatalytic activity. Chem Mater. 2009;21(13):2601.CrossRefGoogle Scholar
  16. [16]
    Liu BS, Nakata K, Sakai M, Saito H, Ochiai T, Murakami T, Takagi K, Fujishima A. Mesoporous TiO2 core-shell spheres composed of nanocrystals with exposed high-energy facets: facile synthesis and formation mechanism. Langmuir. 2011;27(13):8500.CrossRefGoogle Scholar
  17. [17]
    Ichinose H, Terasaki M, Katsuki H. Properties of peroxotitanium acid solution and peroxo-modified anatase sol derived from peroxotitanium hydrate. J Sol–Gel Sci Technol. 2001;22(1–2):33.CrossRefGoogle Scholar
  18. [18]
    Tomita K, Petrykin V, Kobayashi M, Shiro M, Yoshimura M, Kakihana M. A water-soluble titanium complex for the selective synthesis of nanocrystalline brookite, rutile, and anatase by a hydrothermal method. Angew Chem-Int Ed. 2006;45(15):2378.CrossRefGoogle Scholar
  19. [19]
    Kobayashi M, Petrykin V, Tomita K, Kakihana M. New water-soluble complexes of titanium with amino acids and their application for synthesis of TiO2 nanoparticles. J Ceram Soc Jpn. 2008;116(1352):578.CrossRefGoogle Scholar
  20. [20]
    Murakami N, Kawakami S, Tsubota T, Ohno T. Dependence of photocatalytic activity on particle size of a shape-controlled anatase titanium(IV) oxide nanocrystal. J Mol Catal Chem. 2012;358:106.CrossRefGoogle Scholar

Copyright information

© The Nonferrous Metals Society of China and Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Jia Sun
    • 1
    • 4
  • Ming Zhang
    • 1
    • 2
    Email author
  • Zhi-Feng Wang
    • 1
    • 2
  • Hai-Yan Chen
    • 1
    • 3
  • Ye Chen
    • 1
    • 4
  • Naoya Murakami
    • 4
  • Teruhisa Ohno
    • 4
    • 5
  1. 1.School of Chemistry and Chemical EngineeringYangzhou UniversityYangzhouChina
  2. 2.Testing CenterYangzhou UniversityYangzhouChina
  3. 3.Department of Chemical EngineeringYangzhou Polytechnic InstituteYangzhouChina
  4. 4.Department of Applied Chemistry, Faculty of EngineeringKyushu Institute of TechnologyKitakyushuJapan
  5. 5.Japan Science and Technology AgencySaitamaJapan

Personalised recommendations