Skip to main content
Log in

Low-field magnetoresistance of (1−x)La0.6Dy0.1Sr0.3MnO3/0.5x (Sb2O3) composite system under different sintering temperatures of matrix

  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

A series of (1−x)La0.6Dy0.1Sr0.3MnO3/0.5x(Sb2O3)(x=0.15) samples were prepared by the solid-state reaction method, and the influence of sintering temperature of the matrix on low-field magnetoresistance of (1−x)La0.6Dy0.1Sr0.3MnO3/0.5x (Sb2O3) was studied through the measurements of X-ray diffraction (XRD) patterns, scanning electron microscope (SEM) image, resistivity-temperature (ρ−T) curves, and magnetoresistance-temperature (MR-T) curves. The results indicate that for the samples with low sintering temperature of the matrix, low-field magnetoresistance effect appears on the whole temperature range and can be explained by grain boundary effect; for the sample with high sintering temperature of the matrix, intrinsic magnetoresistance peak appears on the high-temperature range, low-field magnetoresistance effect appears on low temperature range, and the magnetoresistance in the magnetic field of 0.2 T and on the comparatively large temperature range between 280 K and 225 K hardly changes with temperature and remains at 4.8%, which can be explained by the competition between the intrinsic magnetoresistance induced by double-exchange function inside grains and the tunneling magnetoresistance (TMR) induced by grain boundary effect. The temperature stability of magnetoresistance is beneficial to the practical applications of MR.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Li T., Pei Z.J., Sun S.M., Ma X.B., Gu J.Q., Zhang M., Wang B., and Yan Hui, Rectifying properties of La0.85Sr0.15MnO3/TiO2 heterostructures as a function of La0.85Sr0.15MnO3 thickness, Semicond. Sci. Technol., 2008, 23(4): 0405010.

    Google Scholar 

  2. Ziese M., Extrinsic magneto transport phenomena in ferromagnetic oxides, Rep. Prog. Phys., 2002, 65(3): 143.

    Article  CAS  Google Scholar 

  3. Peng Z.S., Wang G.Y., Liu P., and Niu X.F., Enhancement of room-temperature magnetoresistance in La0.5Sm0.2Sr0.3MnO3/(Ag2O)x/2, Rare Metals, 2010, 29(1): 45.

    Article  CAS  Google Scholar 

  4. Guo H.Y., Liu N., Cai Z.R., and Zhang Y.H., Influences of W doping at Mn site on magnetic structure of La0.3Ca0.7MnO3 system, Acta Phys. Sin., 2006, 55(2): 865.

    CAS  Google Scholar 

  5. Peng Z.S., Wang W.Q., Mao Q., and Yan G.Q., Increased magnetoresistance of rare-earth-doped (Sm, Gd, Dy) on La0.7Sr0.3MnO3 at room temperature, Chinese Journal of Low Temperature Physics, 2008, 30(1): 37.

    CAS  Google Scholar 

  6. Song Q.X., Niu X.F., Wang G.Y., Tang Y.G., Cai Z.R., and Peng Z.S., Enhancement of room-temperature magnetoresistance in La0.6Dy0.1Sr0.3MnO3/Agx, Rare Metals, 2010, 29(2): 126.

    Article  CAS  Google Scholar 

  7. Yang J., Tang Y.G., Wang G.Y., Cai Z.R., and Peng Z.S., Electric transport property and low-field magnetoresistance effect of (1−x)La0.6Dy0.1Sr0.3MnO3/0.5x (Sb2O3) composite system, Rare Metals, 2011, 35(6): 865.

    Google Scholar 

  8. Balcells L., Carrillo A.E., and Martnez B., Enhanced field sensitivity close to percolation in magnetoresistive La2/3Sr1/3-MnO3/CeO2 composites, Appl. Phys. Lett., 1999, 74(26): 4014.

    Article  CAS  Google Scholar 

  9. Zhang N., and Wang M., Giant positive magnetoresistance in composite (La0.83Sr0.17MnO3)0.6(ITO)0.4, Appl. Phys. Lett., 2006, 88(12): 122111.

    Article  Google Scholar 

  10. Xiong C.S., Hu H.X., Xiong Y.H., Zhang Z.H., Pi H.L., Wu X., Li L.J., Wei F.F., and Zheng C.F., Electrical properties and enhanced room (La0.7Ca0.2Sr0.1MnO3)1−x /Pdx composites, J. Alloys Comp., 2009, 479(2): 357.

    Article  CAS  Google Scholar 

  11. Miao J.H., Yuan S.L., Ren G.M., Xun X., Yu G.Q., Wang Y.Q., and Yin S.Y., Enhancement of magnetoresistance in La2/3Ca1/3MnO3/xCuMn2O4 nanocomposites, J. Phys. D: Appl. Phys., 2007, 40(3): 707.

    Article  CAS  Google Scholar 

  12. Hueso L.E., Rivas J., Rivadulla F., and López-Quintela M.A., Tuning of colossal magnetoresistance via grain size change in LaCaMnO, J. Appl. Phys., 1998, 86(7): 3881.

    Article  Google Scholar 

  13. Sánchez R.D., Rivas J., Vázquez-Vázquez C., López-Quintela A., Causa M.T., Tovar M., and Oseroff S., Giant magnetoresistance in fine particle of La0.67Ca0.33MnO3 synthesized at low temperatures, Appl. Phys. Lett., 1996, 68(1): 134.

    Article  Google Scholar 

  14. Zhang N., Ding W., Zhong W., Xing D.Y., and Du Y.W., Tunnel-type giant magnetoresistance in the granular perovskite La0.85Sr0.15MnO3, Phys. Rev. B, 1997, 56(13): 8138.

    Article  CAS  Google Scholar 

  15. Hwang H.Y., Cheong S.W., Ong N.P., and Batlogg B., Spin-polarized intergrain tunneling in La2/3Sr1/3MnO3, Phys. Rev. Lett., 1996, 77(10): 2041.

    Article  CAS  Google Scholar 

  16. Khare N., Monaril U.P., Gupta A.K., Raychaudhuri A.K., Pai S.P., and Pinto R., Temperature dependence of magnetoresistance and nonlinear conductance of the bicrystal grain boundary in epitaxial La0.67Ba0.33MnO3 thin films, Appl. Phys. Lett., 2002, 81(2): 325.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhensheng Peng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, J., Yan, G., Wang, G. et al. Low-field magnetoresistance of (1−x)La0.6Dy0.1Sr0.3MnO3/0.5x (Sb2O3) composite system under different sintering temperatures of matrix. Rare Metals 31, 276–280 (2012). https://doi.org/10.1007/s12598-012-0505-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-012-0505-8

Keywords

Navigation