Abstract
Given two random variables, what effect does a linear ordering have? We answer this question for more than thirty commonly known families of distributions, including the arcsine, Cauchy, exponential, Fréchet, Gumbel, half normal, logistic, lognormal, Lomax, normal, Pareto, uniform and Weibull distributions. A real data application is given.
Keywords
Distributions Rainfall Stochastic orderingNotes
Acknowledgements
The authors thank the editor and the referee for careful reading and comments.
References
- 1.Adam, M.B.: Stochastic ordering constraint for ordered extremes. Matematika 33, 21–34 (2017)CrossRefGoogle Scholar
- 2.Adam, M.B., Tawn, J.A.: Bivariate extreme analysis of Olympic swimming data. J. Stat. Theory Pract. 6, 510–523 (2012)CrossRefGoogle Scholar
- 3.Adamidis, K., Loukas, S.: A lifetime distribution with decreasing failure rate. Stat. Probab. Lett. 39, 35–42 (1998)CrossRefGoogle Scholar
- 4.Bain, L.J.: Analysis for the linear failure-rate life-testing distribution. Technometrics 16, 551–559 (1974)CrossRefGoogle Scholar
- 5.Belzunce, F., Martinez-Riquelme, C., Mulero, J.: An Introduction to Stochastic Orders. Academic Press, London (2015)Google Scholar
- 6.Chatterjee, A., Chatterjee, A.: Use of the Fréchet distribution for UPV measurements in concrete. NDT E Int. 52, 122–128 (2012)CrossRefGoogle Scholar
- 7.Chen, Q.M., Egan, D.M.: Predicting transformer service life using simplified Perks’ equation and Iowa curves. In: Proceedings of the 2006 power engineering society general meeting, pp. 4194–4200 (2006)Google Scholar
- 8.de Moivre, A.: The Doctrine of Chances. ISBN 0821821032 (1738)Google Scholar
- 9.Fantazzini, P., Brown, R.J.S.: Initially linear echo-spacing dependence of I/T-2 measurements in many porous media with pore-scale inhomogeneous fields. J. Magn. Reson. 177, 228–235 (2005)CrossRefGoogle Scholar
- 10.Fisher, R.A., Tippett, L.H.C.: Limiting forms of the frequency distribution of the largest or smallest member of a sample. Proc. Camb. Philos. Soc. 24, 180–290 (1928)CrossRefGoogle Scholar
- 11.Fréchet, M.: Sur la loi de probabilité de l’écart maximum. Ann. Soc. Pol. Math. 6, 92–116 (1927)Google Scholar
- 12.Gauss, C.F.: Theoria motvs corporvm coelestivm in sectionibvs conicis Solem ambientivm (in Latin) (1809)Google Scholar
- 13.Gumbel, E.J.: Statistical theory of extreme values and some practical applications. In: Applied Mathematics Series, Volume 33, United States Department of Commerce, National Bureau of Standards (1954)Google Scholar
- 14.Holland, O., Golaup, A., Aghvami, A.H.: Traffic characteristics of aggregated module downloads for mobile terminal reconfiguration. IEE Proc. Commun. 153, 683–690 (2006)CrossRefGoogle Scholar
- 15.Hosking, J.R.M.: The theory of probability weighted moments. In: IBM Research Report PC12210 (1989)Google Scholar
- 16.Hosking, J.R.M.: \(L\)-moments: analysis and estimation of distributions using linear combinations of order statistics. J. R. Stat. Soc. B 52, 105–124 (1990)Google Scholar
- 17.Hsing, T.: On the asymptotic independence of the sum and rare values of weakly dependent stationary random variables. Stoch. Process. Their Appl. 60, 49–63 (1995)CrossRefGoogle Scholar
- 18.Kleiber, C., Kotz, S.: Statistical Size Distributions in Economics and Actuarial Sciences. Wiley, Hoboken (2003)CrossRefGoogle Scholar
- 19.Kokonendji, C.C., Khoudar, M.: On strict arcsine distribution. Commun. Stat. Theory Methods 33, 993–1006 (2004)CrossRefGoogle Scholar
- 20.Lehmann, E.A., Phatak, A., Stephenson, A., Lau, R.: Spatial modelling framework for the characterisation of rainfall extremes at different durations and under climate change. Environmetrics 27, 239–251 (2016)CrossRefGoogle Scholar
- 21.Lin, C., Ou, J.P.: Study and application of China’s freeze-thaw action spectrums for life-cycle structure design. In: Lin, P.P., Zhang C.L. (eds) Vibration, Structural Engineering and Measurement, pp. 777–783 (2012)Google Scholar
- 22.Lindsey, J.K., Byrom, W.D., Wang, J., Jarvis, P., Jones, B.: Generalized nonlinear models for pharmacokinetic data. Biometrics 56, 81–88 (2000)CrossRefGoogle Scholar
- 23.Lisek, B.: Comparability of special distributions. Statistics 9, 537–593 (1978)Google Scholar
- 24.Lomax, K.S.: Business failures: another example of the analysis of failure data. J. Am. Stat. Assoc. 49, 847–852 (1954)CrossRefGoogle Scholar
- 25.Marshall, A.W., Olkin, I.: A new method for adding a parameter to a family of distributions with application to the exponential and Weibull families. Biometrika 84, 641–652 (1997)CrossRefGoogle Scholar
- 26.Mizutani, T., Kumar, A., Hiramoto, T.: Statistical analysis of current onset voltage (COV) distribution of scaled MOSFETs. IEICE Trans. Electron. E96C, 630–633 (2013)CrossRefGoogle Scholar
- 27.Nadarajah, S., Anderson, C.W., Tawn, J.A.: Ordered multivariate extremes. J. R. Stat. Soc. B 60, 473–496 (1998)CrossRefGoogle Scholar
- 28.Nadarajah, S., Haghighi, F.: An extension of the exponential distribution. Statistics 45, 543–558 (2011)CrossRefGoogle Scholar
- 29.Olson, D.L., Wu, D.S.: The impact of distribution on value-at-risk measures. Math. Comput. Model. 58, 1670–1676 (2013)CrossRefGoogle Scholar
- 30.Paradis, E., Baillie, S.R., Sutherland, W.J.: Modeling large-scale dispersal distances. Ecol. Model. 151, 279–292 (2002)CrossRefGoogle Scholar
- 31.Pareto, V.: Cours d’Économie Politique: Nouvelle édition par G.-H. Bousquet et G. Busino, Librairie Droz, Geneva, pp. 299–345 (1964)Google Scholar
- 32.Pawlak, M., Yahampath, P.: On construction and simulation of autoregressive sources with near-Laplace marginals. IEEE Trans. Signal Process. 58, 5550–5559 (2010)CrossRefGoogle Scholar
- 33.Perks, W.: On some experiments in the graduation of mortality statistics. J. Inst. Actuar. 63, 12–40 (1932)CrossRefGoogle Scholar
- 34.Pham, H.: A vtub-shaped hazard rate function with applications to system safety. Int. J. Reliab. Appl. 3, 1–16 (2002)Google Scholar
- 35.Pham, H.: Systemability with loglog distributions. In: Proceedings of the 18th ISSAT International Conference on Reliability and Quality in Design, pp. 39–43 (2012)Google Scholar
- 36.Pickands, J.: Statistical inference using extreme order statistics. Ann. Stat. 3, 119–131 (1975)CrossRefGoogle Scholar
- 37.Rao, B.S., Rao, B.V.P., Kantam, R.R.L.: Software reliability growth model based on half logistic distribution. J. Test. Eval. 39, 1152–1157 (2011)Google Scholar
- 38.Schabe, H.: Constructing lifetime distributions with bathtub shaped failure rate from DFR distributions. Microelectron. Reliab. 34, 1501–1508 (1994)CrossRefGoogle Scholar
- 39.Shaked, M., Shanthikumar, J.G.: Stochastic Orders. Springer, New York (2007)CrossRefGoogle Scholar
- 40.Stephenson, A.G., Lehmann, E.A., Phatak, A.: A max-stable process model for rainfall extremes at different accumulation durations. Weather Clim. Extrem. 13, 44–53 (2016)CrossRefGoogle Scholar
- 41.Taylor, J.M.: Comparisons of certain distribution functions. Statistics 14, 397–408 (1983)Google Scholar
- 42.Tyralis, H., Langousis, A.: Estimation of intensity–duration–frequency curves using max-stable processes. Stoch. Environ. Res. Risk Assess. https://doi.org/10.1007/s00477-018-1577-2 (2018a)
- 43.Tyralis, H., Langousis, A.: Modelling of rainfall maxima at different durations using max-stable processes. In: Proceedings of the EGU General Assembly Conference (2018b)Google Scholar
- 44.Topp, C.W., Leone, F.C.: A family of \(J\)-shaped frequency functions. J. Am. Stat. Assoc. 50, 209–219 (1955)CrossRefGoogle Scholar
- 45.van de Vyver, H.: Bayesian estimation of rainfall intensity–duration–frequency relationships. J. Hydrol. 529, 1451–1463 (2015)CrossRefGoogle Scholar
- 46.van Dorp, J.R., Kotz, S.: Estimating income distributions using elevated distributions on a bounded domain. Unpublished manuscript (2003)Google Scholar
- 47.Verhoef, C.: Quantitative IT portfolio management. Sci. Comput. Program. 45, 1–96 (2002)CrossRefGoogle Scholar
- 48.Vlahogianni, E.I.: Modeling duration of overtaking in two lane highways. Transp. Res. Part F Traffic Psychol. Behav. 20, 135–146 (2013)CrossRefGoogle Scholar
- 49.Weibull, W.: A statistical distribution function of wide applicability. J. Appl. Mech. 18, 293–297 (1951)Google Scholar
- 50.Zhang, T., Xie, M., Tang, L.C., Ng, S.H.: Reliability and modeling of systems integrated with firmware and hardware. Int. J. Reliab. Qual. Saf. Eng. 12, 227–239 (2005). https://doi.org/10.1142/S021853930500180X CrossRefGoogle Scholar
- 51.Zhang, W.Z., Kang, Q.R.: Cusp-catastrophic mechanism for shallow landslide instability under heavy rainfall. Disaster Adv. 5, 196–200 (2012)Google Scholar
Copyright information
© Operational Research Society of India 2019