OPSEARCH

, Volume 55, Issue 1, pp 107–133 | Cite as

Multi objective mean–variance–skewness model with Burg’s entropy and fuzzy return for portfolio optimization

Application Article
  • 160 Downloads

Abstract

A new non-Shannon fuzzy Mean–Variance–Skewness-entropy model is proposed with stock returns are considered as triangular fuzzy numbers. The fuzzy stock portfolio selection models are presented with credibility theory that maximizes mean and skewness and minimizes portfolio variance and cross-entropy in terms of Burg. With addition of Burg’s entropy in the multi objective non linear models, focus is the generation of well diversified portfolios within the optimal allocation. For an imprecise capital market, this study facilitates a more reasonable investment decisions with four objective decision criteria including Burg’s entropy. Numerical examples with case studies are used to illustrate the entire method which can be efficiently used in practical purposes like national stock exchanges.

Keywords

Entropy Burg Credibility Fuzzy number Portfolio Multi objective 

References

  1. 1.
    Markowitz, H.: Portfolio selection*. J. Financ. 7, 77–91 (1952)Google Scholar
  2. 2.
    Sharpe, W.F.: A linear programming algorithm for mutual fund portfolio selection. Manag. Sci. 13, 499–510 (1967)CrossRefGoogle Scholar
  3. 3.
    Sharpe, W.F.: A linear programming approximation for the general portfolio analysis problem. J. Financ. Quant. Anal. 6, 1263–1275 (1971)CrossRefGoogle Scholar
  4. 4.
    Sengupta, J.K.: Portfolio decisions as games. Int. J. Syst. Sci. 20, 1323–1334 (1989)CrossRefGoogle Scholar
  5. 5.
    Stone, B.K.: A linear programming formulation of the general portfolio selection problem. J. Financ. Quant. Anal. 8, 621–636 (1973)CrossRefGoogle Scholar
  6. 6.
    Best, M.J., Grauer, R.R.: On the sensitivity of mean–variance–efficient portfolios to changes in asset means: some analytical and computational results. Rev. Financ. Stud. 4, 315–342 (1991)CrossRefGoogle Scholar
  7. 7.
    Lin, C.-C., Liu, Y.-T.: Genetic algorithms for portfolio selection problems with minimum transaction lots. Eur. J. Oper. Res. 185, 393–404 (2008)CrossRefGoogle Scholar
  8. 8.
    Deep, K., Singh, K.P., Kansal, M.L., Mohan, C.: A fuzzy interactive approach for optimal portfolio management. OPSEARCH 46, 69–88 (2009)CrossRefGoogle Scholar
  9. 9.
    Arditti, F.D.: Risk and the required return on equity. J. Financ. 22, 19–36 (1967)CrossRefGoogle Scholar
  10. 10.
    Konno, H., Shirakawa, H., Yamazaki, H.: A mean-absolute deviation-skewness portfolio optimization model. Ann. Oper. Res. 45, 205–220 (1993)CrossRefGoogle Scholar
  11. 11.
    Chunhachinda, P., Dandapani, K., Hamid, S., Prakash, A.: Portfolio selection and skewness: evidence from international stock markets. J. Bank. Financ. 21, 143–167 (1997)CrossRefGoogle Scholar
  12. 12.
    Konno, H.: Piecewise linear risk function and portfolio optimization. J. Oper. Res. Soc. Jpn. 33, 139–156 (1990)CrossRefGoogle Scholar
  13. 13.
    Konno, H., Suzuki, K.: A mean–variance–skewness portfolio optimization model. J. Oper. Res. Soc. Jpn. 38, 173–187 (1995)CrossRefGoogle Scholar
  14. 14.
    Prakash, A.J., Chang, C.-H., Pactwa, T.E.: Selecting a portfolio with skewness: recent evidence from US, European, and Latin American equity markets. J. Bank. Financ. 27, 1375–1390 (2003)CrossRefGoogle Scholar
  15. 15.
    Ibbotson, R.G.: Price performance of common stock new issues. J. Financ. Econ. 2, 235–272 (1975)CrossRefGoogle Scholar
  16. 16.
    Arditti, F.D., Levy, H.: Portfolio efficiency analysis in three moments: the multiperiod case. J. Financ. 30, 797–809 (1975)Google Scholar
  17. 17.
    Bhattacharyya, R., Chatterjee, A., Kar, S.: Uncertainty theory based multiple objective mean-entropy-skewness stock portfolio selection model with transaction costs. J. Uncertain. Anal. Appl. 1, 16 (2013)CrossRefGoogle Scholar
  18. 18.
    Jana, P., Roy, T.K., Mazumder, S.K.: Multi-objective possibilistic model for portfolio selection with transaction cost. J. Comput. Appl. Math. 228, 188–196 (2009)CrossRefGoogle Scholar
  19. 19.
    Huang, X.: Mean-semivariance models for fuzzy portfolio selection. J. Comput. Appl. Math. 217, 1–8 (2008)CrossRefGoogle Scholar
  20. 20.
    Jana, D., Maity, K., Roy, T.: A three-layer supply chain integrated production-inventory model under permissible delay in payments in uncertain environments. J. Uncertain. Anal. Appl. 1, 6 (2013)CrossRefGoogle Scholar
  21. 21.
    Gilmore, C.G., McManus, G.M., Tezel, A.: Portfolio allocations and the emerging equity markets of Central Europe. J. Multinatl. Financ. Manag. 15, 287–300 (2005)CrossRefGoogle Scholar
  22. 22.
    Kapur, J.N., Kesavan, H.K.: Entropy Optimization Principles with Applications. Academic Press, Cambridge (1992)CrossRefGoogle Scholar
  23. 23.
    Fang, S.-C., Rajasekera, J.R., Tsao, H.-S.J.: Entropy optimization models. In: Entropy Optimization and Mathematical Programming, International Series in Operations Research and Management Science, pp. 17–49. Springer, New York (1997)Google Scholar
  24. 24.
    Ray, A., Majumder, S.K.: Derivation of some new distributions in statistical mechanics using maximum entropy approach. Yugosl. J. Oper. Res. 24, 145–155 (2014)CrossRefGoogle Scholar
  25. 25.
    Karmakar, K., Majumder, S.K.: Maximum entropy approach in a traffic stream. Appl. Math. Comput. 195, 61–65 (2008)Google Scholar
  26. 26.
    Rubinstein, R.Y., Kroese, D.P.: Combinatorial optimization via cross-entropy. In: The Cross-Entropy Method; Information Science and Statistics, pp. 129–186. Springer, New York (2004)Google Scholar
  27. 27.
    Bera, A.K., Park, S.Y.: Optimal portfolio diversification using the maximum entropy principle. Econom. Rev. 27, 484–512 (2008)CrossRefGoogle Scholar
  28. 28.
    Huang, X.: Mean-entropy models for fuzzy portfolio selection. IEEE Trans. Fuzzy Syst. 16, 1096–1101 (2008)CrossRefGoogle Scholar
  29. 29.
    Qin, Z., Li, X., Ji, X.: Portfolio selection based on fuzzy cross-entropy. J. Comput. Appl. Math. 228, 139–149 (2009)CrossRefGoogle Scholar
  30. 30.
    Gupta, P., Mehlawat, M.K., Inuiguchi M., Chandra, S.: Portfolio optimization in fuzzy environment. In: Fuzzy Portfolio Optimization; Studies in Fuzziness and Soft Computing, pp. 61–80. Springer, Berlin (2014)Google Scholar
  31. 31.
    Rather, A.M., Sastry, V.N., Agarwal, A.: Stock market prediction and portfolio selection models: a survey. OPSEARCH, 1–22 (2017). doi: 10.1007/s12597-016-0289-y
  32. 32.
    Bhattacharyya, R., Hossain, S.A., Kar, S.: Fuzzy cross-entropy, mean, variance, skewness models for portfolio selection. J. King Saud Univ. Comput. Inf. Sci. 26, 79–87 (2014)CrossRefGoogle Scholar
  33. 33.
    Bhattacharyya, R., Kar, S., Majumder, D.D.: Fuzzy mean–variance–skewness portfolio selection models by interval analysis. Comput. Math Appl. 61, 126–137 (2011)CrossRefGoogle Scholar
  34. 34.
    Roy, T.K., Maiti, M.: A fuzzy EOQ model with demand-dependent unit cost under limited storage capacity. Eur. J. Oper. Res. 99, 425–432 (1997)CrossRefGoogle Scholar
  35. 35.
    Liu, B.: Toward uncertain finance theory. J. Uncertain. Anal. Appl. 1, 1 (2013)CrossRefGoogle Scholar
  36. 36.
    Li, X., Qin, Z., Kar, S.: Mean–variance–skewness model for portfolio selection with fuzzy returns. Eur. J. Oper. Res. 202, 239–247 (2010)CrossRefGoogle Scholar
  37. 37.
    Liu, L., Miao, S., Liu, B.: On nonlinear complexity and shannon’s entropy of finite length random sequences. Entropy 17, 1936–1945 (2015)CrossRefGoogle Scholar
  38. 38.
    Huang, X.: Fuzzy chance-constrained portfolio selection. Appl. Math. Comput. 177, 500–507 (2006)Google Scholar
  39. 39.
    Simkowitz, M.A., Beedles, W.L.: Diversification in a three-moment world. J. Financ. Quant. Anal. 13, 927–941 (1978)CrossRefGoogle Scholar
  40. 40.
    Li, X.: Fuzzy cross-entropy. J. Uncertain. Anal. Appl. 3, 2 (2015)CrossRefGoogle Scholar
  41. 41.
    Sadefo Kamdem, J., Tassak Deffo, C., Fono, L.A.: Moments and semi-moments for fuzzy portfolio selection. Insur. Math. Econ. 51, 517–530 (2012)CrossRefGoogle Scholar
  42. 42.
    Shannon, C.E.: A mathematical theory of communication. SIGMOBILE Mob. Comput. Commun. Rev, 5, 3–55 (2001)CrossRefGoogle Scholar
  43. 43.
    Burg, J.: The relationship between maximum entropy spectra and maximum likelihood spectra. Geophysics 37, 375–376 (1972)CrossRefGoogle Scholar
  44. 44.
    Kapur, J.N.: Measures of Information and Their Applications. Wiley, New York (1994)Google Scholar
  45. 45.
    Ray, A., Majumder, S.K.: A note on burg’s modified entropy in statistical mechanics. Mathematics 4, 10 (2016)CrossRefGoogle Scholar
  46. 46.
    Ray, A., Majumder, S.K.: Concavity of maximum entropy through modified Burg’s entropy subject to its prescribed mean. Int. J. Math. Oper. Res. 8, 393–405 (2016)CrossRefGoogle Scholar
  47. 47.
    Liu, B.: Uncertain risk analysis. In: Uncertainty Theory; Springer Uncertainty Research, pp. 137–149. Springer, Berlin (2015)Google Scholar
  48. 48.
    Zadeh, L.A.: Fuzzy sets. Inf. Control 8, 338–353 (1965)CrossRefGoogle Scholar
  49. 49.
    Liu, B., Liu, Y.-K.: Expected value of fuzzy variable and fuzzy expected value models. IEEE Trans. Fuzzy Syst. 10, 445–450 (2002)CrossRefGoogle Scholar
  50. 50.
    Liu, B.: Uncertainty Theory: An Introduction to Its Axiomatic Foundations. Springer Science & Business Media, Berlin (2004)CrossRefGoogle Scholar
  51. 51.
    Li, X., Liu, B.: A sufficient and necessary condition for credibility measures. Int. J. Uncertain. Fuzziness Knowl. Based Syst. 14, 527–535 (2006)CrossRefGoogle Scholar
  52. 52.
    Li, P., Liu, B.: Entropy of credibility distributions for fuzzy variables. IEEE Trans. Fuzzy Syst. 16, 123–129 (2008)CrossRefGoogle Scholar
  53. 53.
    Li, X., Liu, B.: Maximum entropy principle for fuzzy variables. Int. J. Uncertain. Fuzziness Knowl. Based Syst. 15, 43–52 (2007)CrossRefGoogle Scholar
  54. 54.
    Yan, L.: Optimal portfolio selection models with uncertain returns. Mod. Appl. Sci. 3, 76 (2009)Google Scholar

Copyright information

© Operational Research Society of India 2017

Authors and Affiliations

  1. 1.Department of MathematicsIndian Institute of Engineering Science and Technology (IIEST), ShibpurHowrahIndia

Personalised recommendations