Advertisement

Journal of Optics

, Volume 48, Issue 4, pp 512–519 | Cite as

260 W of average green beam generation by intracavity frequency-doubled acousto-optic Q-Switched Nd:YAG laser

  • Amarjeet SinghEmail author
  • Sunil K. Sharma
  • Pranab K. Mukhopadhyay
  • Kushvinder S. Bindra
Research Article
  • 6 Downloads

Abstract

We developed an intracavity frequency-doubled acousto-optic Q-switched Nd:YAG laser generating ~ 260 W of average green power using two identical diode-pumped gain modules with fivefold pumping symmetry in a simple two mirror linear cavity configuration. The corresponding optical to optical conversion efficiency was estimated to be ~ 16.8%. At maximum output power, individual green pulse duration (FWHM) was measured to be ~ 73 ns with a pulse repetition rate of 18 kHz. The output average green power was highly stable with measured fluctuation in average green power ± 0.83 W over 5 h of continuous operation. The jitter in pulse delay time and pulse to pulse amplitude fluctuation was measured to be within ± 4.25 ns and ± 5%, respectively. The maximum beam drift recorded at 5 m distance away from the laser system was ~ 14 micron corresponding to beam pointing stability of ± 2.8 micro-rad.

Keywords

Diode-pumped solid-state lasers High-power green laser Intracavity frequency conversion Acousto-optic Q-switching 

Notes

References

  1. 1.
    R. Patel, J. Bovatsek, H.R. Goy, Doubling silicon ablation process efficiency and improving quality using high power high repetition rate green laser with timeshift capability. J. Laser Micro/Nanoeng. 10(2), 134–139 (2015).  https://doi.org/10.2961/jlmn.2015.02.0005 CrossRefGoogle Scholar
  2. 2.
    S. Amorosi, Th Sidler, R.P. Salathé, H.P. Schwob, J. Hertzberg, Laser microspot welding of copper. J. Laser Appl. 16(3), 134–139 (2004).  https://doi.org/10.2351/1.1771145 CrossRefGoogle Scholar
  3. 3.
    J.W. Lee, B.S. So, H. Chung, J.H. Hwang, Application of 532 nm YAG-Laser annealing to crystallization of amorphous Si thin films deposited on glass substrates. Korean J. Mater. Res. 18(3) 113–116 (2008).  https://doi.org/10.3740/MRSK.2008.18.3.113 CrossRefADSGoogle Scholar
  4. 4.
    J. Yi, J.T. Kim, H.J. Moon, S. Rho, J. Han, Y. Rhee, J. Lee, Single-mode pulsed dye laser pumped by using a diode-pumped Nd:YAG laser with a long pulse width. J. Korean Phys. Soc. 35(3) 275–279 (1999)Google Scholar
  5. 5.
    K.H. Hong, S. Kostritsa, T.J. Yu, J.H. Sung, I.W. Choi, Y.C. Noh, D.K. Ko, J. Lee, 100-kHz high-power femtosecond Ti:Sapphire laser based on downchirped regenerative amplification. Opt. Express 14(2), 970–978 (2006)CrossRefADSGoogle Scholar
  6. 6.
    Z. Ren, Z. Huang, S. Jia, Y. Ge, J. Bai, 532 nm laser based on V-type doubly resonant intra-cavity frequency-doubling. Opt. Commun. 282, 263–266 (2009)CrossRefADSGoogle Scholar
  7. 7.
    B. Yong, C. Qianjin, G. Aicong, Y. Xiaodong, P. Qinjun, L. Yuanfu, C. Dafu, X. Zuyan, 218 W, M2 = 20.2 green beam generation by intracavity frequency-doubled diode-pumped Nd:YAG laser, in Conference on Lasers and Electro-Optics, OSA 1–55752–834–9 (2007)Google Scholar
  8. 8.
    J.J. Chang, E.P. Dragon, I.L. Bass, 315 W pulsed-green generation with a diode-pumped Nd:YAG laser, in Conference on Lasers and Electro-Optics, OSA CPD2 (1998)Google Scholar
  9. 9.
    D.R. Dudley, O. Mehl, G.Y. Wang, E.S. Allee, H.Y. Pang, N. Hodgson, Q-switched diode pumped Nd:YAG rod laser with output power of 420 W at 532 nm and 160 W at 355 nm. Proc. SPIE 7193, 71930Z-1–71938 (2009)CrossRefGoogle Scholar
  10. 10.
    K. Tsubakimoto, H. Yoshida, N. Miyanaga, High-average-power green laser using Nd:YAG amplifier with stimulated Brillouin scattering phase-conjugate pulse-cleaning mirror. Opt. Express 24(12), 12557–12564 (2016)CrossRefADSGoogle Scholar
  11. 11.
    T. Kojima, K. Furuta, M. Kurosawa, J. Nishimae, 400-W diode-pumped solid-state green laser, in Conference on Lasers and Electro-Optics/Pacific Rim, pp. 280–281 (2005)Google Scholar
  12. 12.
    S.K. Sharma, A.J. Singh, P.K. Gupta, P. Hedaoo, P.K. Mukhopadhyay, K. Ranganathan, K.S. Bindra, S.M. Oak, Thermal birefringence-compensated linear intracavity frequency doubled Nd:YAG rod laser with 73 ns pulse duration and 160 W green output power. Pramana J. Phys. 82(2), 191–195 (2014)CrossRefADSGoogle Scholar
  13. 13.
    N. Hodgson, H. Weber, Optical Resonators (Springer, Berlin, 1997)CrossRefGoogle Scholar
  14. 14.
    W. Koechner, Solid State Laser Engineering, 6th edn. (Springer, New York, 2006)zbMATHGoogle Scholar
  15. 15.
    N. Hodgson, C. Rahlff, H. Weber, Dependence of the refractive power of Nd:YAG rods on the intracavity intensity. Opt. Laser Technol. 25(3), 179–185 (1993)CrossRefADSGoogle Scholar
  16. 16.
    H. Yang, W. Xie, J. Gu, S.C. Tam, Y.L. Lam, Theoretical simulation of a diode-pumped high-average-power solid state lasers. SPIE 3898, 0277-786X-99, pp. 186–197 (2009)Google Scholar
  17. 17.
    J. Yao, Y. Wang, Nonlinear Optics and Solid-State Lasers, 1st edn. (Springer, Berlin, 2012), p. 193CrossRefGoogle Scholar
  18. 18.
    A.E. Siegman, S.W. Townsend, Output Beam Propagation and Beam Quality from a Multimode Stable-Cavity Laser. IEEE J. Quantum Electron. 29(4), 1212–1217 (1993)CrossRefADSGoogle Scholar

Copyright information

© The Optical Society of India 2019

Authors and Affiliations

  • Amarjeet Singh
    • 1
    Email author
  • Sunil K. Sharma
    • 1
  • Pranab K. Mukhopadhyay
    • 1
  • Kushvinder S. Bindra
    • 1
  1. 1.Laser Development and Industrial Applications DivisionRaja Ramanna Centre for Advanced TechnologyIndoreIndia

Personalised recommendations