Advertisement

Tuning the optical properties of CdSe quantum dot using graphene nanocomposite

  • Mohamed M. Awad
  • Ahmed I. Abdel-Salam
  • S. A. Elfeky
  • Hossam S. Rady
  • Ahmed S. Hassanien
  • Mona B. Mohamed
  • Yahia H. ElbasharEmail author
Tutorial Paper
  • 7 Downloads

Abstract

Graphene semiconductor quantum dots (G-QDs) nanocomposites have attracted a lot of scientific interest. They have promising properties which allow them to be a good choice for photoelectric devices. G-QDs nanocomposites are prepared chemically by thermal decomposition of organometallic complex. Synthesis procedures were performed in the absence and presence of graphene in order to study its influence on the optical properties of the quantum dots (QDs) precisely. Various experimental techniques were utilized to study the morphology, crystal structure and the optical properties of the as-prepared materials using X-ray diffraction, Fourier transform infrared spectroscopy, transmission electron microscopy and UV/visible spectrophotometer. This paper will discuss the coupling between graphene and QDs showing the quenching of QDs emission, slowing rate of particle growth, increasing stock shift and enhancing the particle size distribution.

Keywords

Semiconductor quantum dots (G-QDs) nanocomposites QDs emission 

Notes

References

  1. 1.
    K.S. Novoselov et al., A roadmap for graphene. Nature 490(7419), 192 (2012)ADSCrossRefGoogle Scholar
  2. 2.
    M. Zhao, Direct synthesis of graphene quantum dots with different fluorescence properties by oxidation of graphene oxide using nitric acid. Appl. Sci. 8(8), 1303 (2018)CrossRefGoogle Scholar
  3. 3.
    R. Maria-Hormigos, B. Jurado-Sánchez, A. Escarpa, Graphene quantum dot based micromotors: a size matter. Chem. Commun. 55(47), 6795–6798 (2019)CrossRefGoogle Scholar
  4. 4.
    P. Avouris, Graphene: electronic and photonic properties and devices. Nano Lett. 10(11), 4285–4294 (2010)ADSCrossRefGoogle Scholar
  5. 5.
    D. Chen, L. Tang, J. Li, Graphene-based materials in electrochemistry. Chem. Soc. Rev. 39(8), 3157–3180 (2010)CrossRefGoogle Scholar
  6. 6.
    T. Kuila et al., Recent advances in the efficient reduction of graphene oxide and its application as energy storage electrode materials. Nanoscale 5(1), 52–71 (2013)ADSCrossRefGoogle Scholar
  7. 7.
    J.D. Fowler et al., Practical chemical sensors from chemically derived graphene. ACS Nano 3(2), 301–306 (2009)CrossRefGoogle Scholar
  8. 8.
    Y.-W. Son, M.L. Cohen, S.G. Louie, Energy gaps in graphene nanoribbons. Phys. Rev. Lett. 97(21), 216803 (2006)ADSCrossRefGoogle Scholar
  9. 9.
    T. Tabish, S. Zhang, Graphene Quantum Dots: Syntheses, Properties and Biological Applications (Elsevier, Amsterdam, 2016)Google Scholar
  10. 10.
    Y. Dong et al., Carbon-based dots co-doped with nitrogen and sulfur for high quantum yield and excitation-independent emission. Angew. Chem. Int. Ed. 52(30), 7800–7804 (2013)CrossRefGoogle Scholar
  11. 11.
    G. Yang et al., Structure of graphene and its disorders: a review. Sci. Technol. Adv. Mater. 19(1), 613–648 (2018)CrossRefGoogle Scholar
  12. 12.
    Mohamed, M.B., Synthesis, Characterization and Ultrafast Femtosecond Laser Spectroscopy of Metallic and Semiconductor Nanoparticles. Ph.D. thesis. 2002Google Scholar
  13. 13.
    Emam, A.N., Biophysical study of Semiconductor Nanoparticles doped with different Magnetic materials for some Biomedical applications. M.Sc. Thesis. 2009Google Scholar
  14. 14.
    A.L. Efros, M. Rosen, The Electronic Structure of Semiconductor Nanocrystals 1. Annu. Rev. Mater. Sci. 30(1), 475–480 (2000)ADSCrossRefGoogle Scholar
  15. 15.
    A.P. Alivisatos, Perspectives on the physical chemistry of semiconductor nanocrystals. J. Phys. Chem. 100(31), 13226 (1996)CrossRefGoogle Scholar
  16. 16.
    X. Michalet, F. Pinaud, T.D. Lacoste, M. Dahan, M.P. Bruchez, A. Paul Alivisatos, S. Weiss, Properties of fluorescent semiconductor nanocrystals and their application to biological labeling. Single Mol. 2(4), 261 (2001)ADSCrossRefGoogle Scholar
  17. 17.
    A.F. Zedan, Synthesis and Properties Characterization of Semiconductor and Metallic Hybrid Core Shell Nanocomposites of Potential Biological Applications. M.Sc. Thesis. 2007Google Scholar
  18. 18.
  19. 19.
    R. Rossetti, L. Brus, Electron-hole recombination emission as a probe of surface chemistry in aqueous cadmium sulfide colloids. J. Phys. Chem. 86(23), 4470–4472 (1982)CrossRefGoogle Scholar
  20. 20.
    C. Yuan, Development of Nanoparticle Sensitized Solar Cells. 2013Google Scholar
  21. 21.
    W.W. Yu, X. Peng, Formation of high-quality CdS and Other II–VI semiconductor nanocrystals in noncoordinating solvents: tunable reactivity of monomers. Angew. Chem. Int. Ed. 41(13), 2368–2371 (2002)ADSCrossRefGoogle Scholar
  22. 22.
    L. Qu, X. Peng, Control of photoluminescence properties of CdSe nanocrystals in growth. J. Am. Chem. Soc. 124(9), 2049–2055 (2002)CrossRefGoogle Scholar
  23. 23.
    H.J. Lee et al., CdSe quantum dot-sensitized solar cells exceeding efficiency 1% at full-sun intensity. J. Phys. Chem. C 112(30), 11600–11608 (2008)CrossRefGoogle Scholar
  24. 24.
    M. Gao et al., Strongly photoluminescent CdTe nanocrystals by proper surface modification. J. Phys. Chem. B 102(43), 8360–8363 (1998)CrossRefGoogle Scholar
  25. 25.
    M.A. Hines, P. Guyot-Sionnest, Bright UV-blue luminescent colloidal ZnSe nanocrystals. J. Phys. Chem. B 102(19), 3655–3657 (1998)CrossRefGoogle Scholar
  26. 26.
    D. Battaglia, X. Peng, Formation of high quality InP and InAs nanocrystals in a noncoordinating solvent. Nano Lett. 2(9), 1027–1030 (2002)ADSCrossRefGoogle Scholar
  27. 27.
    S. Tanaka, S. Iwai, Y. Aoyagi, Self-assembling GaN quantum dots on AlxGa1− xN surfaces using a surfactant. Appl. Phys. Lett. 69(26), 4096–4098 (1996)ADSCrossRefGoogle Scholar
  28. 28.
    N.P. Dasgupta et al., Atomic layer deposition of lead sulfide quantum dots on nanowire surfaces. Nano Lett. 11(3), 934–940 (2011)ADSCrossRefGoogle Scholar
  29. 29.
    J.E. Murphy, M.C. Beard, A.J. Nozik, Time-resolved photoconductivity of PbSe nanocrystal arrays. J. Phys. Chem. B 110(50), 25455–25461 (2006)CrossRefGoogle Scholar
  30. 30.
    Y. Niquet et al., Quantum confinement in germanium nanocrystals. Appl. Phys. Lett. 77(8), 1182–1184 (2000)ADSCrossRefGoogle Scholar
  31. 31.
    K. Littau et al., A luminescent silicon nanocrystal colloid via a high-temperature aerosol reaction. J. Phys. Chem. 97(6), 1224–1230 (1993)CrossRefGoogle Scholar
  32. 32.
    B. Dabbousi et al., (CdSe) ZnS core-shell quantum dots: synthesis and characterization of a size series of highly luminescent nanocrystallites. J. Phys. Chem. B 101(46), 9463–9475 (1997)CrossRefGoogle Scholar
  33. 33.
    S. Xu, J. Ziegler, T. Nann, Rapid synthesis of highly luminescent InP and InP/ZnS nanocrystals. J. Mater. Chem. 18(23), 2653–2656 (2008)CrossRefGoogle Scholar
  34. 34.
    L. Manna et al., Epitaxial growth and photochemical annealing of graded CdS/ZnS shells on colloidal CdSe nanorods. J. Am. Chem. Soc. 124(24), 7136–7145 (2002)CrossRefGoogle Scholar
  35. 35.
    R. Xie et al., Synthesis and characterization of highly luminescent CdSe-Core CdS/Zn0. 5Cd0. 5S/ZnS multishell nanocrystals. J. Am. Chem. Soc. 127(20), 7480–7488 (2005)CrossRefGoogle Scholar
  36. 36.
    S. Kim et al., Type-II quantum dots: CdTe/CdSe (core/shell) and CdSe/ZnTe (core/shell) heterostructures. J. Am. Chem. Soc. 125(38), 11466–11467 (2003)CrossRefGoogle Scholar
  37. 37.
    A. Nemchinov et al., Synthesis and characterization of type II ZnSe/CdS core/shell nanocrystals. J. Phys. Chem. C 112(25), 9301–9307 (2008)CrossRefGoogle Scholar
  38. 38.
    X. Zhong et al., Alloyed Znx Cd1xS nanocrystals with highly narrow luminescence spectral width. J. Am. Chem. Soc. 125(44), 13559–13563 (2003)CrossRefGoogle Scholar
  39. 39.
    A. Cao et al., A facile one-step method to produce graphene–CdS quantum dot nanocomposites as promising optoelectronic materials. Adv. Mater. 22(1), 103–106 (2010)CrossRefGoogle Scholar
  40. 40.
    M. Zhu, G. Diao, Synthesis of porous Fe3O4 nanospheres and its application for the catalytic degradation of xylenol orange. J. Phys. Chem. C 115(39), 18923–18934 (2011)CrossRefGoogle Scholar
  41. 41.
    W.S. Hummers Jr., R.E. Offeman, Preparation of graphitic oxide. J. Am. Chem. Soc. 80(6), 1339–1339 (1958)CrossRefGoogle Scholar
  42. 42.
    D.C. Marcano et al., Improved synthesis of graphene oxide. ACS Nano 4(8), 4806–4814 (2010)CrossRefGoogle Scholar
  43. 43.
    X. Peng et al., Shape control of CdSe nanocrystals. Nature 404(6773), 59–61 (2000)ADSCrossRefGoogle Scholar
  44. 44.
    D.R. Dreyer et al., The chemistry of graphene oxide. Chem. Soc. Rev. 39(1), 228–240 (2010)CrossRefGoogle Scholar
  45. 45.
    Q. Dai et al., Colloidal CdSe nanocrystals synthesized in noncoordinating solvents with the addition of a secondary ligand: exceptional growth kinetics. J. Phys. Chem. B 110(33), 16508–16513 (2006)CrossRefGoogle Scholar

Copyright information

© The Optical Society of India 2019

Authors and Affiliations

  • Mohamed M. Awad
    • 1
    • 2
  • Ahmed I. Abdel-Salam
    • 3
  • S. A. Elfeky
    • 2
  • Hossam S. Rady
    • 4
  • Ahmed S. Hassanien
    • 5
  • Mona B. Mohamed
    • 1
    • 2
    • 4
  • Yahia H. Elbashar
    • 4
    Email author
  1. 1.Physics DepartmentLoughborough UniversityLoughboroughUK
  2. 2.National Institute of Laser Enhanced Science (NILES)Cairo UniversityGizaEgypt
  3. 3.Nanotechnology Research Center (NTRC)British University in Egypt (BUE)El Shorouk CityEgypt
  4. 4.Egyptian Nanotechnology Center (EGNC)Cairo UniversityGizaEgypt
  5. 5.The American University in Cairo (AUC)CairoEgypt

Personalised recommendations