Advertisement

Use of optical Kerr medium for parametric generation of very low frequency electrical signal

  • Agnijita ChatterjeeEmail author
  • Sourangshu Mukhopadhyay
Research Article

Abstract

Optical self-focusing and defocusing, optical switching activities and optical signal processing can be successfully done by using optical Kerr materials. Due to the nonlinear property of Kerr medium, this medium can be used to convert the frequency of the applied light signal passing through the medium. Here, in this paper, the authors propose a method of using optical Kerr medium for parametric generation of very low frequency electrical signal.

Keywords

Optical Kerr medium Optical switching activities Parametric generation of electrical signal 

Notes

References

  1. 1.
    A. Chatterjee, S. Mukhopadhyay, A new method of obtaining an ultrashort optical pulse by the use of optical kerr material and a sawtooth optical pulse. Int. J. Electron. Commun. Technol. 6, 42–43 (2015)Google Scholar
  2. 2.
    A. Chatterjee, A. Biswas, S. Mukhopadhyay, Method of frequency conversion of Manchester encoded data from a Kerr type of nonlinear medium. J. Opt. 46, 415–419 (2017)CrossRefGoogle Scholar
  3. 3.
    J. Xu, X. Yu, W. Lu, F. Qu, N. Deng, Offset Manchester coding for rayleigh noise suppression in carrier distributed WDM-POMS. Opt. Commun. 346, 106–109 (2015)ADSCrossRefGoogle Scholar
  4. 4.
    J. Leuuthold, C.-S. Bres, All-optical pulse shaping for highest spectral efficiency. Springer Ser. Opt. Sci. 194, 217–260 (2015)CrossRefGoogle Scholar
  5. 5.
    A.M. Cailean, B. Cagnea, L. Chassagne, Evaluation of the noise effects on visible light communications using Manchester and Miller coding, in Conference Proceedings, Development and Application System (DAS) (IEEE, 2014), pp. 85–89, 6842433.  https://doi.org/10.1109/daa-s
  6. 6.
    B. Chakraborty, S. Mukhopadhyay, Alternative approach of conducting phase-modulated all optical logic gates. Opt. Eng. 48, 035201 (2009)ADSCrossRefGoogle Scholar
  7. 7.
    M. Vitek, I. Musevic, Nanosecond control and optical pulse shaping by stimulated emission depletion in a liquid crystal. Opt. Express 23, 16921–16932 (2015)ADSCrossRefGoogle Scholar
  8. 8.
    S. Dhar, S. Mukhopadhyay, All optical implementation of ASCII by use of nonlinear material for optical encoding of necessary symbols. Opt. Eng. 44, 065201 (2005)ADSCrossRefGoogle Scholar
  9. 9.
    D. Samanta, S. Mukhopadhyay, All-optical method for maintaining a fixed intensity level of a light signal in optical computation. Opt. Commun. 281, 4851–4853 (2008)ADSCrossRefGoogle Scholar
  10. 10.
    S.K. Chandra, S. Biswas, S. Mukhopadhyay, Phase encoded all-optical reconfigurable integrated multilogic unit using phase information processing of four wave mixing in semiconductor optical amplifier. IET Optoelectron. 10, 1–6 (2016)CrossRefGoogle Scholar
  11. 11.
    S. Sen, S. Mukhopadhyay, Reduction of VP voltage of an electro-optic modulator by the oblique end cutting and multi-rotation. Opt. Laser Technol. 59, 19–23 (2014)ADSCrossRefGoogle Scholar
  12. 12.
    S. Bhattacharya, S.N. Patra, S. Mukhopadhyay, An all optical prototype neuron based on optical Kerr material. Optik Int. J. Light Electron Opt. 126, 13–18 (2015)CrossRefGoogle Scholar
  13. 13.
    F.E. Robles, M.C. Fischer, W.S. Warren, Femtosecond pulse shaping enables detection of optical Kerr-effect (OKE) dynamics for molecular imaging. Opt. Lett. 39, 4788–4991 (2014)ADSCrossRefGoogle Scholar
  14. 14.
    S. Biswas, S. Mukhopadhyay, All-Optical approach for conversion of a binary number having a fractional part to its decimal equivalent to three places of decimal using single system optical tree architecture. J. Opt. 43, 122–129 (2014)CrossRefGoogle Scholar
  15. 15.
    Y. Liu, F. Qin, F. Zhou, Q-b Meng, D-z Zhang, Z-y Li, Ultrafast optical switching in Kerr nonlinear photonic crystals. Front. Phys. Chin. 5, 220–244 (2010)CrossRefGoogle Scholar
  16. 16.
    Z.-Y. Li, Z.-M. Meng, Polystyrene Kerr nonlinear photonic crystals for building ultrafast optical switching and logic devices. J. Mater. Chem. C 2, 773–954 (2014)CrossRefGoogle Scholar
  17. 17.
    L. Brzozowski, E.H. Sargent, Azobenzenes for photonic network applications: third-order nonlinear optical properties. J. Mater. Sci.: Mater. Electron. 12, 483–489 (2001)Google Scholar
  18. 18.
    B. Sarkar, S. Mukhopadhyay, Optoelctronic scheme for generation of time bound low-frequency electronic signal using multi-passing of light. J. Opt. Commu. (2018).  https://doi.org/10.1515/joc CrossRefGoogle Scholar
  19. 19.
    S. Mitra, S. Mukhopadhyay, An all optical scheme for implementing a NAND logic by dibit representation of squeezed states of light. J. Nonlinear Opt. Phys. Mater. 24, 1550048 (2015)ADSCrossRefGoogle Scholar

Copyright information

© The Optical Society of India 2019

Authors and Affiliations

  1. 1.Department of PhysicsThe University of BurdwanBurdwanIndia
  2. 2.University Institute of TechnologyThe University of BurdwanBurdwanIndia

Personalised recommendations