Advertisement

Journal of Optics

, Volume 48, Issue 4, pp 468–473 | Cite as

Multiple filamentation and control of properties of self-guided elliptical Gaussian laser beam

  • Chironjit HazarikaEmail author
  • Abhijeet Das
  • Subrata Hazarika
Research Article
  • 8 Downloads

Abstract

The spatial evolution of an elliptical Gaussian beam in fluoride glass (Kerr medium) is studied using nonlinear Schrödinger equation solved by split-step beam propagation method. Solutions obtained by numerical simulation are analysed to study the effect of variation of input beam ellipticity on the process of multiple filamentation in elliptical Gaussian beam, where emphasis is on the properties of the self-guided Gaussian laser beam by externally induced input beam astigmatism. Controlling the properties of self-guided laser beam is a necessity in generation of tailored filaments.

Keywords

Multiple filamentation Tailored filaments Nonlinear Schrodinger equation (NLSE) Beam ellipticity 

Notes

References

  1. 1.
    V.I. Bespalov, V.I. Talanov, Filamentary structure of light beams in nonlinear media. Trans. JETP Lett. 3, 307–310 (1966)ADSGoogle Scholar
  2. 2.
    G. Fibich, The Nonlinear Schrödinger Equation Singular Solutions and Optical Collapse, ch.3 (Springer, Berlin, 2015)CrossRefGoogle Scholar
  3. 3.
    Z.Q. Hao, R. Salamé, N. Lascoux, E. Salmon, P. Maioli, J. Kasparian, J.B. Wolf, Multiple filamentation of non-uniformly focused ultrashort laser pulses. Appl. Phys. B 94, 243–247 (2009)ADSCrossRefGoogle Scholar
  4. 4.
    Z.A. Kudyshev, M.C. Richardson, N.M. Litchinitser, Virtual hyperbolic metamaterials for manipulating radar signals in air. Nat. Commun. 4, 2557 (2013)ADSCrossRefGoogle Scholar
  5. 5.
    J. Kasparian et al., Electric events synchronized with laser filaments in thunderclouds. Opt. Express 16, 5757 (2008)ADSCrossRefGoogle Scholar
  6. 6.
    E.W. Rosenthal, N. Jhajj, J.K. Wahlstrand, H.M. Milchberg, Collection of remote optical signals by air waveguides. Optica 1, 5 (2014)ADSCrossRefGoogle Scholar
  7. 7.
    J.W. Grantham, H.M. Gibbs, G. Khitrova, J.F. Valley, J.J. Xu, Kaleidoscopic spatial instability: bifurcation of optical transverse solitary wave. Phys. Rev. Lett. 66, 1422–1425 (1991)ADSCrossRefGoogle Scholar
  8. 8.
    G. Fibich, B. Ilan, Multiple filamentation of circularly polarized beams. Phys. Rev. Lett. 89, 0139019 (2002)CrossRefGoogle Scholar
  9. 9.
    G. Fibich, B. Ilan, Self-focusing of circularly polarized beams. Phys. Rev. E 67, 036622 (2003)ADSCrossRefGoogle Scholar
  10. 10.
    A. Dubietis, G. Tamosauskas, G. Fibich, B. Ilan, Multiple filamentation induced by input beam ellipticity. Opt. Lett. 29, 1126–11289 (2004)ADSCrossRefGoogle Scholar
  11. 11.
    R.W. Boyd (ed.), Self-Focusing: Past and Present, Topics in Applied Physics, Ch.4 (Springer, Berlin, 2009)Google Scholar
  12. 12.
    G.P. Agarwal, Nonlinear Fiber Optics, ch.2 (Academic Press, Cambridge, 2001)Google Scholar
  13. 13.
    G. Fibich, B. Ilan, Self focusing of elliptic beams: an example of the failure of the aberrationless approximation. J. Opt. Soc. Am. B 17, 1749–17589 (2000)ADSCrossRefGoogle Scholar

Copyright information

© The Optical Society of India 2019

Authors and Affiliations

  • Chironjit Hazarika
    • 1
    Email author
  • Abhijeet Das
    • 2
  • Subrata Hazarika
    • 2
  1. 1.Department of PhysicsMariani CollegeJorhatIndia
  2. 2.Department of PhysicsAssam University, Diphu CampusKarbi AnglongIndia

Personalised recommendations