All-optical logic gate NAND using semiconductor optical amplifiers with simulation

  • K. MukherjeeEmail author
  • A. Raja
  • K. Maji
Research Article


Hybrid encoding technique for the representation of the binary states of information, four-wave mixing in semiconductor optical amplifier (SOA) as frequency generator and cross-polarization rotation effect in semiconductor optical amplifier as a frequency converter are used to design all-optical universal logic gate NAND. The devices can perform ultrafast operation and easily integrable. The simulated results of the proposed logic gate ensure feasibility of the proposals.


Optical logic Four-wave mixing Polarization rotation Hybrid encoding Semiconductor optical amplifier Optical switch 



  1. 1.
    Y. Wang, X. Liu, Q. Tian, L. Wang, X. Xin, All-optical clocked flip-flops and random access memory cells using the nonlinear polarization rotation effect of low-polalrization-dependent semiconductor optical amplifiers. Opt. Commun. 410, 846 (2018)ADSCrossRefGoogle Scholar
  2. 2.
    N. Mitra, S. Mukhopadhyay, A new scheme of an all-optical J-K flip flop using nonlinear material. J. Opt. 37(3), 85–92 (2008)CrossRefGoogle Scholar
  3. 3.
    K. Mukherjee, Alternative approach to optical frequency encoded flip flops by utilizing semiconductor optical amplifier non linearity. J. Opt. 41, 16 (2012). CrossRefGoogle Scholar
  4. 4.
    S. Mukhopadhyay, An optical conversion system: from binary to decimal and decimal to binary. Opt. Commun. (Neth) 76(5–6), 2163–2171 (1990)Google Scholar
  5. 5.
    J.N. Roy, S. Mukhopadhyay, A minimization scheme of optical space variant logic operations in a combinational architecture. Opt. Commun. 119, 499–504 (1995)ADSCrossRefGoogle Scholar
  6. 6.
    S.K. Garai, D. Samanta, S. Mukhopadhyay, All optical implementation of inversion logic operation by second harmonic generation and wave mixing character of some nonlinear material. Opt. Optoelectron. Technol. China 6(4), 43–46 (2008)Google Scholar
  7. 7.
    S.K. Gorai, S. Mukhopadhyay, Method of implementing frequency—encoded NOT, OR and NOR logic operations using lithium niobate waveguide and reflecting semiconductor optical amplifiers. Pramana J. Phys. 73(5), 901–912 (2009)ADSCrossRefGoogle Scholar
  8. 8.
    J. Wang, J. Sun, C. Luo, Q. Sun, Experimental demonstration of wavelength conversion between ps-pulses based cascaded sum and difference frequency generation (SFG + DFG) in LiNbO3 waveguides. Opt. Express 13(19), 7405–7414 (2005)ADSCrossRefGoogle Scholar
  9. 9.
    K. Mukherjee, P. Ghosh, A novel frequency encoded all optical CNOT gate exploiting difference frequency generation and implementation of fast binary adders using frequency encoding and nonlinear dielectric films. Optik Int. J. Light Electron. Opt. 121(24), 2195–2197 (2010). CrossRefGoogle Scholar
  10. 10.
    W. Wu, S. Champbell, S. Zhou, P. Yeh, Polarization encoded optical logic operation in photorefractive media. Opt. Lett. 18(20), 1742–1744 (1993)ADSCrossRefGoogle Scholar
  11. 11.
    M. Martinelli, P. Martinelli, S.M. Pietralunga, Polarization stabilization in optical communication system. J. Ligtwave Technol. 24, 4172 (2006)ADSCrossRefGoogle Scholar
  12. 12.
    J. Zhang, H. Xu, Optical computation based on nonlinear total reflectional optical switch at the interface. Pramana 72(3), 547–554 (2009)ADSCrossRefGoogle Scholar
  13. 13.
    K. Mukherjee, Implementation of a novel hybrid encoding technique and realization of all optical logic gates exploiting difference frequency generation alone. Optik 122(4), 321–323 (2011)ADSCrossRefGoogle Scholar
  14. 14.
    K. Mukherjee, Implementation of hybrid encoded all optical computation using non linear material based difference frequency generation alone. Opt. Photon. Lett. 3(1), 61–71 (2010)CrossRefGoogle Scholar
  15. 15.
    X. Shi, Y. Guan, A method to implement optical logic AND based on FWM effect of SOA. International Conference on Mechanronics. Control and Electronic Engineering (MCE 2014)Google Scholar
  16. 16.
    B. Ramamurthy, B. Mukherjee, Wavelength conversion in WDM networking. IEEE J. Sel. Areas Commun. 16(7), 1061–1073 (1998)CrossRefGoogle Scholar
  17. 17.
    H.J.S. Dorren, D. Lenstra, Y. Liu, M.T. Hill, G.D. Khoe, Nonlinear polarization rotation in semiconductor optical amplifiers: theory and application to all optical flip-flop memories. IEEE J. Quantum Electron. 39, 141–148 (2003)ADSCrossRefGoogle Scholar
  18. 18.
    J.P.R. Lacey, M.A. Summerfield, S.J. Madden, Tunability of polarization—insensitive wavelength converters based on four wave mixing in semiconductor optical amplifiers. J. Ligthwave Technol. 16, 2419–2427 (1998)ADSCrossRefGoogle Scholar
  19. 19.
    J. Zhou, N. Park, K.J. Vahala, M.A. Newkirk, B.I. Miller, Four-wave mixing wavelength conversion efficiency in semiconductor traveling wave amplifiers measured to 65 nm of wavelength shift. IEEE Photon. Teachnol. Lett. 6, 984–987 (1994)ADSCrossRefGoogle Scholar
  20. 20.
    S. Zhang, Y. Liu, Q. Zhang, H. Li, Y. Liu, All optical sampling based on nonlinear polarization rotation in semiconductor optical amplifiers. J. Optoelectron. Biomed. Mater. 1(4), 383–388 (2009)Google Scholar
  21. 21.
    K. Mukherjee, Semiconductor optical amplifier based frequency encoded logic gates exploiting non-linear polarization rotation only. J. Circuit Syst. Comput. 23(09), 1450130 (2014). CrossRefGoogle Scholar
  22. 22.
    K. Mukherjee, All optical frequency encoded combinational logic devices utilizing polarization independent four wave mixing in semiconductor optical amplifiers. J Circuit Syst. Comput. 23(09), 1450129 (2014). CrossRefGoogle Scholar
  23. 23.
    L.Q. Guo, M.J. Connelly, Signal induced birefringence and dichroism in a tensile-strained bulk semiconductor optical amplifier and its application to wavelength conversion. J. Lightwave Technol. 23(12), 4037 (2005)ADSCrossRefGoogle Scholar
  24. 24.
    K. Mukherjee, A novel frequency encoded all optical logic gates exploiting polarization insensitive four wave mixing in semiconductor optical amplifier, filtering property of ADD/DROP multiplexer and non-linearity of reflective semiconductor amplifier. Opt. Int. J. Light Electron Opt. 122, 891 (2011)CrossRefGoogle Scholar
  25. 25.
    P.P. Baveja, D.N. Maywar, G.P. Agrawal, Interband four-wave mixing in semiconductor optical amplifiers with ASE-enhanced gain recovery. IEEE J. Quantum Electron. 18(2), 899 (2012)CrossRefGoogle Scholar
  26. 26.
    K. Komatsu, G. Hosaya, H. Yashima, All optical logic NOR gate using a single quantum dot SOA assisted an optical filter. Opt. Quantum Electron. 50, 131 (2018)CrossRefGoogle Scholar

Copyright information

© The Optical Society of India 2019

Authors and Affiliations

  1. 1.Department of Physics (P.G. & U.G.)B. B. CollegeAsansol, BurdwanIndia

Personalised recommendations