Advertisement

Mode and sensing properties of a silicon-based hybrid plasmonic microring resonator

  • Meng Zhang
  • Genzhu WuEmail author
  • Daru Chen
  • Binbin Liu
Research Article
  • 21 Downloads

Abstract

A silicon-based hybrid plasmonic microring resonator consisting of a silicon-on-insulator ring which is separated from a silver nanoring by a low-permittivity dielectric is proposed for sensing applications. Benefitting from the hybrid modes and the circular-shaped cross section of nanoring, the hybrid microcavity can attract part of the cavity energy from the silicon ring microcavity, achieving high energy ratio and high refractive index sensitivity. The performance of the hybrid microcavity has been investigated by employing a finite element method and analyzed considering the different structure geometry, showing high quality factor of 1181, small mode volume of 0.154 µm3 and large refractive index sensitivity of 529.6 nm/RIU (refractive index unit). Thus, the presented silicon-based hybrid plasmonic microring resonator provides the potential applications in sensing at deep sub-wavelength scale.

Keywords

Hybrid plasmonic microcavity Hybrid plasmonic mode Quality factor Effective mode volume High sensitive sensor 

Notes

Acknowledgements

This work was supported by the Natural Science Foundation of Zhejiang Province of China under Grant Nos. LY15F050001, 2011C21038 and 2011C22051, the National Natural Science Foundation of China under Grant No. 61007029 and Zhejiang Province Key Science and Technology Innovation Team Project under Grant No. 2010R50007.

References

  1. 1.
    K.D. Vos, I. Bartolozzi, E. Schacht, P. Bienstman, R. Baets, Silicon-on-insulator microring resonator for sensitive and label-free biosensing. Opt. Express 15, 7610–7615 (2007)ADSCrossRefGoogle Scholar
  2. 2.
    E. Krioukov, D.J.W. Klunder, A. Driessen, J. Greve, C. Otto, Integrated formation of a high-quality beam from a pure high-order Hermite–Gaussian mode. Opt. Lett. 27, 1504–1506 (2002)ADSCrossRefGoogle Scholar
  3. 3.
    A. Yalcin, K.C. Popat, J.C. Aldridge, T.A. Desai, J. Hryniewicz, N. Chbouki, B.E. Little, O. King, V. Van, S. Chu, D. Gill, M. Anthes-Washburn, M.S. Unlu, B.B. Goldberg, Optical sensing of biomolecules using microring resonators. IEEE J. Sel. Top. Quant. 12, 148–155 (2006)CrossRefGoogle Scholar
  4. 4.
    F. Vollmer, S. Arnold, Whispering-gallery-mode biosensing: label-free detection down to single molecules. Nat. Methods 5, 591–596 (2008)CrossRefGoogle Scholar
  5. 5.
    A. Densmore, D.-X. Xu, P. Waldron, S. Janz, P. Cheben, J. Lapointe, A. Delage, B. Lamontagne, J.H. Schmid, E. Post, A silicon-on-insulator photonic wire based evanescent field sensor. IEEE Photon. Technol. Lett. 18, 2520–2522 (2006)ADSCrossRefGoogle Scholar
  6. 6.
    B. Liedberg, C. Nylander, I. Lundstrom, Surface plasmon resonance for gas detection and biosensing. Sens. Actuators 4, 299–304 (1983)CrossRefGoogle Scholar
  7. 7.
    R. Slavik, J. Homola, J. Ctyroky, E. Brynda, Novel spectral fiber optic sensor based on surface plasmon resonance. Sens. Actuators, B 74, 106–111 (2001)CrossRefGoogle Scholar
  8. 8.
    H. Ditlbacher, A. Hohenau, D. Wagner, U. Kreibig, M. Rogers, F. Hofer, F.R. Aussenegg, J.R. Krenn, Silver nanowires as surface plasmon resonators. Phys. Rev. Lett. 95, 257403 (2005)ADSCrossRefGoogle Scholar
  9. 9.
    Y.F. Xiao, C.L. Zou, B.B. Li, Y. Li, C.H. Dong, Z.F. Han, Q.H. Gong, High-Q exterior whispering-gallery modes in a metal-coated microresonator. Phys. Rev. Lett. 105, 153902-1–153902-4 (2010)ADSGoogle Scholar
  10. 10.
    Y.F. Xiao, B.B. Li, X. Jiang, X.Y. Hu, Y. Li, Q.H. Gong, High quality factor, small mode volume, ring-type plasmonic microresonator on a silver chip. J. Phys. B: At. Mol. Opt. Phys. 43, 035402 (2010)ADSCrossRefGoogle Scholar
  11. 11.
    Y. Song, J. Wang, M. Yan, M. Qiu, Subwavelength hybrid plasmonic nanodisk with high Q factor and Purcell factor. J. Opt. 13, 075001 (2011)ADSCrossRefGoogle Scholar
  12. 12.
    D.X. Dai, Y.C. Shi, S.L. He, W. Lech, L. Thylen, Silicon hybrid plasmonic submicron-donut resonator with pure dielectric access waveguides. Opt. Express 19, 23671–23682 (2011)ADSCrossRefGoogle Scholar
  13. 13.
    Y.W. Hu, B.B. Li, Y.X. Liu, Y.F. Xiao, Q.H. Gong, Hybrid photonic-plasmonic mode for refractometer and nanoparticle trapping. Opt. Commun. 291, 380–385 (2013)ADSCrossRefGoogle Scholar
  14. 14.
    Q.J. Lu, D.R. Chen, G.Z. Wu, B.J. Peng, J.C. Xu, A hybrid plasmonic microresonator with high quality factor and small mode volume. J. Opt. 14, 125503-1–125503-5 (2012)ADSGoogle Scholar
  15. 15.
    C.Y. Jeong, M. Kim, S. Kim, Metal nanodisk hybrid plasmonic resonator ondielectric substrate for relieved fabrication complexity. Opt. Express 22, 5772–5780 (2014)ADSCrossRefGoogle Scholar
  16. 16.
    Q.J. Lu, F.J. Shu, D.R. Chen, G.Z. Wu, P. Zhou, Focusing of electromagnetic field in high-Q hybrid wedge plasmon polariton microresonator. Appl. Opt. 51, 6968–6973 (2012)ADSCrossRefGoogle Scholar
  17. 17.
    H.M. Gong, L. Zhou, X.R. Su, S. Xiao, S.D. Liu, Q.Q. Wang, Illuminating dark plasmons of silver nanoantenna rings to enhance exciton-plasmon interactions. Adv. Funct. Mater. 19, 298–303 (2009)CrossRefGoogle Scholar
  18. 18.
    L. Zhou, X.F. Fu, L. Yu, X. Zhang, X.F. Yu, Z.H. Hao, Crystal structure and optical properties of silver nano-rings. Appl. Phys. Lett. 94, 153102 (2009)ADSCrossRefGoogle Scholar
  19. 19.
    M. Oxborrow, Traceable 2-D finite-element simulation of the whispering-gallery modes of axisymmetric electromagnetic resonators. IEEE Trans. Microw. Theory 55, 1209–1218 (2007)CrossRefGoogle Scholar
  20. 20.
    B. Min, E. Ostby, V. Sorger, E. Ulin-Avila, L. Yang, X. Zhang, K. Vahala, High-Q surface-plasmon-polariton whispering-gallery microcavity. Nature 457, 455–458 (2009)ADSCrossRefGoogle Scholar

Copyright information

© The Optical Society of India 2019

Authors and Affiliations

  • Meng Zhang
    • 1
    • 2
  • Genzhu Wu
    • 1
    • 2
    • 3
    Email author
  • Daru Chen
    • 1
    • 2
  • Binbin Liu
    • 1
    • 2
  1. 1.Institute of Information OpticsZhejiang Normal UniversityJinhuaChina
  2. 2.Joint Research Laboratory of Optics of Zhejiang Normal University and Zhejiang UniversityHangzhouChina
  3. 3.Xingzhi CollegeZhejiang Normal UniversityJinhuaChina

Personalised recommendations